Skip to main content

Real-Time Decision Making for Train Carriage Load Prediction via Multi-stream Learning

  • Conference paper
  • First Online:
AI 2020: Advances in Artificial Intelligence (AI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12576))

Included in the following conference series:

  • 1584 Accesses

Abstract

Real-time traffic planning and scheduling optimization are critical for developing low-cost, reliable, resilient, and efficient transport systems. In this paper, we present a real-time application that uses machine learning techniques to forecast the train carriage load when a train departure from a platform. With the predicted carriage load, crew can efficiently manage passenger flow, improving the efficiency of boarding and alighting, and thereby reducing the time trains spend at stations. We developed the application in collaboration with Sydney Trains. Most data are publicly available on Open Data Hub, which is supported by the Transport for NSW. We investigated the performance of different models, features, and measured their contributions to prediction accuracy. From this we propose a novel learning strategy, called Multi-Stream Learning, which merges streams having similar concept drift patterns to boost the training data size with the aim of achieving lower generalization errors. We have summarized our solutions and hope researchers and industrial users who might be facing similar problems will benefit from our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Z., Hensher, D.A.: Crowding in public transport: a review of objective and subjective measures. J. Public Transp. 16, 107–134 (2013). https://doi.org/10.5038/2375-0901.16.2.6

    Article  Google Scholar 

  2. Campigotto, P., Rudloff, C., Leodolter, M., Bauer, D.: Personalized and situation-aware multimodal route recommendations: the FAVOUR algorithm. IEEE Trans. Intell. Transp. Syst. 1(18), 92–102 (2017). https://doi.org/10.1109/TITS.2016.2565643

    Article  Google Scholar 

  3. Vandewiele, G., Van Herwegen F.O.J., Colpaert, P., De Turck, R.V.F., Janssens, O., Mannens, E.: Predicting train occupancies based on query logs and external data sources. In: 26th International World Wide Web Conference, pp. 1469–1474. ACM, Australia (2019). https://doi.org/10.1145/3041021.3051699

  4. Lu, J., Liu, A., Song, Y., Zhang, G.: Data-driven decision support under concept drift in streamed big data. Complex Intell. Syst. 6(1), 157–163 (2019). https://doi.org/10.1007/s40747-019-00124-4

    Article  Google Scholar 

  5. TfNSW, Tfnsw Open Data Hub And Developer Portal (2020). https://opendata.transport.nsw.gov.au/user-guide

  6. Yu, H., Lu, J., Zhang, G.: Continuous support vector regression for nonstationary streaming data. IEEE Trans. Cybern., 1–14 (2020). https://doi.org/10.1109/TCYB.2020.3015266

  7. Liu, A., Lu, J., Zhang, G.: Concept drift detection via equal intensity k-means space partitioning. IEEE Trans. Cybern., 1–14 (2020). https://doi.org/10.1109/tcyb.2020.2983962

  8. TrainWiki, Sydney Trains (2020). https://nswtrains.fandom.com/wiki/Sydney_Trains

  9. TfNSW, Waratah Trains (2020). https://transportnsw.info/travel-info/ways-to-get-around/train/fleet-facilities/waratah-trains

  10. Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation networks with limited traffic data. Ieee Trans. Intell. Transp. Syst. 2(16), 653–662 (2015)

    Google Scholar 

  11. Yu, H., Lu, J., Zhang, G.: Online topology learning by a gaussian membership-based self-organizing incremental neural network. IEEE Trans. Neural Networks Learn. Syst., 1–15 (2020). https://doi.org/10.1109/TNNLS.2019.2947658

  12. Toqúe, F., Côme, E., Mahrsi, M.K. El, Oukhellou, L.: Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In: 19th International Conference on Intelligent Transportation Systems, Proceedings, pp. 1071–1076. IEEE, Brazil (2016). https://doi.org/10.1109/ITSC.2016.7795689

  13. Chow, D., Liu, A., Zhang, G., Lu, J.: Knowledge graph-based entity importance learning for multi-stream regression on Australian fuel price forecasting. In: Proceedings of International Joint Conference Neural Networks, pp. 1–8. IEEE, Hungary (2019). https://doi.org/10.1109/IJCNN.2019.8851790

  14. Chung, W., Kim, J., Lee, H., Kim, E.: General dimensional multiple-output support vector regressions and their multiple kernel learning. IEEE Trans. Cybern. 11(45), 2572–2584 (2015). https://doi.org/10.1109/TCYB.2014.2377016

    Article  Google Scholar 

  15. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 3(46), 817–833 (2013). https://doi.org/10.1016/j.patcog.2012.09.023

    Article  Google Scholar 

  16. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 5(5), 216–233 (2015). https://doi.org/10.1002/widm.1157

  17. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: 31st Conference on Neural Information Processing Systems, pp. 3147–3155. ACM, USA (2017)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2012). https://doi.org/10.1007/s13398-014-0173-7.2

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, N., Lu, J., Zhang, G., Lopez De Mantaras, R.: A concept drift-tolerant case-base editing technique. Artif. Intell. 230, 108–133 (2016). https://doi.org/10.1016/j.artint.2015.09.009

  20. Lu, N., Zhang, G., Lu, J.: Concept drift detection via competence models. Artif. Intell. 209, 11–28 (2014). https://doi.org/10.1016/j.artint.2014.01.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, B., et al.: Deep uncertainty quantification: a machine learning approach for weather forecasting. In: Proceedings of ACM SIGKDD International Conference Knowledge Discovery Data Mining, pp. 2087–2095 (2019). https://doi.org/10.1145/3292500.3330704

  22. Lu, J., Zuo, H., Zhang, G.: Fuzzy multiple-source transfer learning. IEEE Trans. Fuzzy Syst. 6706, 1–14 (2019). https://doi.org/10.1109/tfuzz.2019.2952792

    Article  Google Scholar 

Download references

Acknowledgement

This study was undertaken as part of the carriage load prediction project coordinated by Sydney Trains (PRO20-9756), and supported by the Australian Research Council (ARC) under Discovery Grant DP190101733 and Laureate project FL190100149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Liu, A., Wang, B., Li, R., Zhang, G., Lu, J. (2020). Real-Time Decision Making for Train Carriage Load Prediction via Multi-stream Learning. In: Gallagher, M., Moustafa, N., Lakshika, E. (eds) AI 2020: Advances in Artificial Intelligence. AI 2020. Lecture Notes in Computer Science(), vol 12576. Springer, Cham. https://doi.org/10.1007/978-3-030-64984-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64984-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64983-8

  • Online ISBN: 978-3-030-64984-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics