Abstract
In order to keep roads in acceptable condition, and to perform maintenance of essential infrastructure, roadworks are required. Due to the increasing traffic volumes and the increasing urbanisation, road agencies are currently facing the problem of effective planning frequent –and usually concurrent– roadworks in the controlled region. However, there is a lack of techniques that can support traffic authorities in this task. In fact, traffic authorities have usually to rely on human experts (and their intuition) to decide how to schedule and perform roadworks. In this paper, we introduce a Mixed-Integer Programming approach that can be used by traffic authorities to plan a set of required roadworks, over a period of time, in a large urban region, by specifying constraints to be satisfied and suitable quality metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
United Nations - https://rb.gy/nsqvcw.
- 2.
- 3.
References
CSPLib language minizinc. http://www.csplib.org/Languages/MiniZinc
Bixby, E.R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and practice — closing the gap. In: Powell, M.J.D., Scholtes, S. (eds.) CSMO 1999. ITIFIP, vol. 46, pp. 19–49. Springer, Boston (2000). https://doi.org/10.1007/978-0-387-35514-6_2
Burningham, S., Stankevich, N.: Why road maintenance is important and how to get it done (2005)
Forrest, J., Lougee-Heimer, R.: CBC user guide. In: Emerging Theory, Methods, and Applications, pp. 257–277. INFORMS (2005)
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogn. 51, 481–491 (2016)
Huerne, H.t., Berkum, E.v., Hermelink, W.: A multi objective framework to optimise planning of road works. In: 5th Eurasphalt and Eurobitume Congress (2012)
Hussain, R.S., Ruikar, K., Enoch, M.P., Brien, N., Gartside, D.: Process mapping for road works planning and coordination. Built Environ. Proj. Asset Manag. 7(2), 157–172 (2017)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning Theory and Practice. Elsevier, San Francisco (2004)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38
Paquay, C., Schyns, M., Limbourg, S.: A mixed integer programming formulation for the three-dimensional bin packing problem deriving from an air cargo application. Int. Trans. Oper. Res. 23(1–2), 187–213 (2016)
Scala, E., Haslum, P., Thiébaux, S., Ramírez, M.: Interval-based relaxation for general numeric planning. In: Proceedings of ECAI, pp. 655–663 (2016)
Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans. Program. Lang. Syst. (TOPLAS) 31(1), 2 (2008)
Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008–2013. AI Mag. 35(2), 55–60 (2014)
Valicka, C.G., et al.: Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty. Eur. J. Oper. Res. 275(2), 431–445 (2018)
Vallati, M., Chrpa, L., Kitchin, D.: How to plan roadworks in urban regions? A principled approach based on AI planning. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp. 453–460. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_37
Ye, Y., Grossmann, I.E., Pinto, J.M.: Mixed-integer nonlinear programming models for optimal design of reliable chemical plants. Comput. Chem. Eng. 116, 3–16 (2018)
Acknowledgement
L. Chrpa was partially funded by the Czech Science Foundation (project no. 18-07252S). M. Vallati was partially supported by the EPSRC grant EP/R51343X/1 (AI4ME).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Vallati, M., Chrpa, L. (2020). A Mixed-Integer Programming Approach for Scheduling Roadworks in Urban Regions. In: Gallagher, M., Moustafa, N., Lakshika, E. (eds) AI 2020: Advances in Artificial Intelligence. AI 2020. Lecture Notes in Computer Science(), vol 12576. Springer, Cham. https://doi.org/10.1007/978-3-030-64984-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-64984-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64983-8
Online ISBN: 978-3-030-64984-5
eBook Packages: Computer ScienceComputer Science (R0)