Abstract
In this paper, we investigate the security of the Learning With Error (LWE) problem with small secrets by refining and improving the so-called dual lattice attack. More precisely, we use the dual attack on a projected sublattice, which allows generating instances of the LWE problem with a slightly bigger noise that correspond to a fraction of the secret key. Then, we search for the fraction of the secret key by computing the corresponding noise for each candidate using the newly constructed LWE samples. As secrets are small, we can perform the search step very efficiently by exploiting the recursive structure of the search space. This approach offers a trade-off between the cost of lattice reduction and the complexity of the search part which allows to speed up the attack. Besides, we aim at providing a sound and non-asymptotic analysis of the techniques to enable its use for practical selection of security parameters. As an application, we revisit the security estimates of some fully homomorphic encryption schemes, including the Fast Fully Homomorphic Encryption scheme over the Torus (TFHE) which is one of the fastest homomorphic encryption schemes based on the (Ring-)LWE problem. We provide an estimate of the complexity of our method for various parameters under three different cost models for lattice reduction and show that the security level of the TFHE scheme should be re-evaluated according to the proposed improvement (for at least 7 bits for the most recent update of the parameters that are used in the implementation).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We point out that this attack is slightly more subtle than the vanilla dual technique, as it encompasses a continuous relaxation of the lazy modulus switching technique of [Alb17].
- 2.
Up to our knowledge previous analyses rely on instantiation of asymptotic inequalities and overlook the practical applicability.
References
Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_19
Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354 (2015)
Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_18
Ajtai, M.: The shortest vector problem in L\(_{2}\) is NP-hard for randomized reductions. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 10–19. ACM (1998)
Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_4
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–24. Society for Industrial and Applied Mathematics (2016)
Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_21
Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 24–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_2
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Compu. Theory (TOCT) 6(3), 13 (2014)
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM (JACM) 50(4), 506–519 (2003)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM (2013)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)
Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement homomorphe. Ph.D. thesis, Paris 7 (2013)
Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle attack on sparse and ternary secret LWE. IEEE Access 7, 89497–89506 (2019)
Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_1
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_20
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012:144 (2012)
Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9, pp. 169–178 (2009)
Gama, N., et al.: Github repository. TFHE: Fast fully homomorphic encryption library over the torus (2016). https://github.com/tfhe/tfhe
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9
Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_25
Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)
Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_19
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Laine, K., Player, R.: Simple encrypted arithmetic library-seal (v2. 0). Technical report (2016)
Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_31
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)
Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse and ternary secret LWE. IACR Cryptology ePrint Archive, 2019:1019 (2019)
Wunderer, T.: Revisiting the hybrid attack: Improved analysis and refined security estimates. IACR Cryptology ePrint Archive, 2016:733 (2016)
Acknowledgments
We thank the anonymous reviewers for valuable comments on this work, as well as Alexandre Wallet and Paul Kirchner for interesting discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Espitau, T., Joux, A., Kharchenko, N. (2020). On a Dual/Hybrid Approach to Small Secret LWE. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds) Progress in Cryptology – INDOCRYPT 2020. INDOCRYPT 2020. Lecture Notes in Computer Science(), vol 12578. Springer, Cham. https://doi.org/10.1007/978-3-030-65277-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-65277-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65276-0
Online ISBN: 978-3-030-65277-7
eBook Packages: Computer ScienceComputer Science (R0)