Abstract
Serverless computing is a Cloud development paradigm where developers write and compose stateless functions, abstracting from their deployment and scaling. In this paper, we address the problem of function-execution scheduling, i.e., how to schedule the execution of Serverless functions to optimise their performance against some user-defined goals. We introduce a declarative language of Allocation Priority Policies (APP) to specify policies that inform the scheduling of function execution. We present a prototypical implementation of APP as an extension of Apache OpenWhisk and we validate it by i) implementing a use case combining IoT, Edge, and Cloud Computing and ii) by comparing its performance to an alternative implementation that uses vanilla OpenWhisk.
S. Giallorenzo formerly worked at the University of Southern Denmark, Odense, Denmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The kind of computational resources that determine the
option depends on the APIs provided by a given serverless platform. For example, in our prototype in Sect. 4 we consider a worker label
when the related invokers are declared “unhealthy” by the OpenWhisk APIs, which use memory consumption and CPU load.
- 2.
In this paper we chose to associate one worker label with one invoker. Future developments can use labels to identify pools of resources, following, e.g., recent proposals to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).
References
Jonas, E., et al.: Cloud programming simplified: a berkeley view on serverless computing. CoRR, vol. abs/1902.03383 (2019)
Baresi, L., Mendonça, D.F.: Towards a serverless platform for edge computing. In: IEEE ICFC 2019, pp. 1–10. IEEE (2019)
AWS: AWS IoT Greengrass. https://aws.amazon.com/greengrass/. Accessed Apr 2020
AWS: Lambda. https://aws.amazon.com/lambda/. Accessed Apr 2020
Apache openwhisk (2019). https://openwhisk.apache.org/. Accessed Apr 2020
Microsoft: Azure Functions. https://azure.microsoft.com/services/functions. Accessed Apr 2020
Google: Cloud Functions. https://cloud.google.com/functions. Accessed Apr 2020
Iron.io: IronFunctions. https://open.iron.io. Accessed Apr 2020
Hendrickson, S., et al.: Serverless computation with openlambda. Login Usenix Mag. 41(4) (2016)
IBM: Cloud Functions. https://www.ibm.com/cloud/functions. Accessed Apr 2020
Baldini, I., et al.: Serverless computing: current trends and open problems. In: Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Computing, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8_1
Hellerstein, J.M.: Serverless computing: one step forward, two steps back. In: CIDR (2019). www.cidrdb.org
Bernstein, D.: Containers and cloud: from LXC to docker to Kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)
Armbrust, M., et al.: Above the clouds: a berkeley view of cloud computing. University of California, Berkeley, Rep. UCB/EECS, vol. 28, no. 13, p. 2009 (2009)
Wang, L., Li, M., Zhang, Y. , Ristenpart, T., Swift, M.: Peeking behind the curtains of serverless platforms. In: 2018 USENIX Annual Technical Conference (USENIX/ATC 18), pp. 133–146 (2018)
Xie, Q., Pundir, M., Lu, Y., Abad, C.L., Campbell, R.H.: Pandas: robust locality-aware scheduling with stochastic delay optimality. IEEE/ACM Trans. Netw. 25(2), 662–675 (2016)
Wang, W., Zhu, K., Ying, L., Tan, J., Zhang, L.: Maptask scheduling in MapReduce with data locality: throughput and heavy-traffic optimality. IEEE/ACM Trans. Netw. 24, 190–203 (2016)
Ben-Kiki, O., Evans, C., Ingerson, B.: YAML ain’t markup language (YAML\(^{\rm TM}\)) version 1.1. Working Draft 2008–05, vol. 11 (2009)
Baldini, I., et al.: The serverless trilemma: function composition for serverless computing. In: ACM Onward! 2017, pp. 89–103 (2017)
Kuntsevich, A., Nasirifard, P., Jacobsen, H.-A.: A distributed analysis and benchmarking framework for apache openwhisk serverless platform. In: Middleware (Posters), pp. 3–4 (2018)
Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implications of function-as-a-service computing. In: MICRO’52, pp. 1063–1075 (2019)
Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., Sukhomlinov, V.: Agile cold starts for scalable serverless. In: HotCloud 19 (2019)
Abad, C.L., Boza, E.F., Eyk, E.V.: Package-aware scheduling of FaaS functions. In: ACM/SPEC ICPE, pp. 101–106. ACM (2018)
Suresh, A., Gandhi, A.: FnSched: an efficient scheduler for serverless functions. In: WOSC@Middleware, pp. 19–24. ACM (2019)
Stein, M.: The serverless scheduling problem and NOAH. arXiv preprint arXiv:1809.06100 (2018)
Akkus, I.E., et al.: SAND: towards high-performance serverless computing. In: 2018 USENIX Annual Technical Conference (USENIX/ATC 18), pp. 923–935 (2018)
Sampé, J., Sánchez-Artigas, M., García-López, P., París, G.: Data-driven serverless functions for object storage. In: Middleware 2017, pp. 121–133. Association for Computing Machinery (2017)
Baresi, L., Mendonça, D.F.: Towards a serverless platform for edge computing. In: 2019 IEEE ICFC, pp. 1–10. IEEE (2019)
Aske, A., Zhao, X.: Supporting multi-provider serverless computing on the edge. In: ICPP, Workshop Proceedings, pp. 20:1–20:6. ACM (2018)
Hall, A., Ramachandran, U.: An execution model for serverless functions at the edge. In: IoTDI 2019, New York, NY, USA, pp. 225–236. ACM (2019)
Glikson, A., Nastic, S., Dustdar, S.: Deviceless edge computing: extending serverless computing to the edge of the network. In: SYSTOR 2017. ACM, New York (2017)
Gabbrielli, M., Giallorenzo, S., Lanese, I., Montesi, F., Peressotti, M., Zingaro, S.P.: No more, no less. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 148–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_9
Jangda, A., Pinckney, D., Brun, Y., Guha, A.: Formal foundations of serverless computing. In: Proceedings of the ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–26 (2019)
Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on the fly deployment optimization using SMT and CP technologies. In: SETTA, pp. 229–245 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
De Palma, G., Giallorenzo, S., Mauro, J., Zavattaro, G. (2020). Allocation Priority Policies for Serverless Function-Execution Scheduling Optimisation. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds) Service-Oriented Computing. ICSOC 2020. Lecture Notes in Computer Science(), vol 12571. Springer, Cham. https://doi.org/10.1007/978-3-030-65310-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-65310-1_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65309-5
Online ISBN: 978-3-030-65310-1
eBook Packages: Computer ScienceComputer Science (R0)