Skip to main content

Topological Analysis of Synthetic Models for Air Transportation Multilayer Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications IX (COMPLEX NETWORKS 2020 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 944))

Included in the following conference series:

  • 2690 Accesses

Abstract

Airline transportation systems can naturally be modeled as multilayer networks, each layer capturing a different airline company. Originally conceived for mimicking real-world airline transportation systems, synthetic models for airline network generation can be helpful in a variety of tasks, such as simulation and optimization of the growth of the network system, analysis of its vulnerability or strategic placement of airports. In this paper, we thoroughly investigate the behavior of existing generative models for airline multilayer networks, namely BINBALL, STARGEN, and ANGEL. To conduct our study, we used the European Air Transportation Network (EATN) and the domestic United States Airline Transportation Network (USATN) as references. Our extensive analysis of structural characteristics has revealed that ANGEL excels the two previously introduced generative models in terms of replication of the layers of the reference networks. To the best of our knowledge, this is the first study that provides a systematic comparison of generative models for airline transportation multilayer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/gephi/gephi/wiki/Datasets.

  2. 2.

    The parameters \(P_{nodeL}\) and \(P_{layerN}\) stand for the probability distribution of the node count per layer and the random selection of the number of layers a node appears in, respectively.

  3. 3.

    We implemented BINBALL, STARGEN, and ANGEL, and carried out their analysis – presented in the next section – in Python 3.6.0 and networkx 2.0.

References

  1. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. PNAS 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  2. Bagler, G.: Analysis of the airport network of India as a complex weighted network. Phys. A 387(12), 2972–2980 (2008)

    Article  Google Scholar 

  3. Barrat, A., Barthelemy, M., Vespignani, A.: The architecture of complex weighted networks: measurements and models. In: Large Scale Structure and Dynamics of Complex Networks, pp. 67–92. World Scientific (2007)

    Google Scholar 

  4. Barthélemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  5. Basu, P., Sundaram, R., Dippel, M.: Multiplex networks: a generative model and algorithmic complexity. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 456–463 (2015)

    Google Scholar 

  6. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)

    Article  Google Scholar 

  8. Cardillo, A., Zanin, M., Gómez-Gardenes, J., Romance, M., del Amo, A.J.G., Boccaletti, S.: Modeling the multi-layer nature of the European air transport network: resilience and passengers re-scheduling under random failures. Eur. Phys. J. ST 215(1), 23–33 (2013)

    Article  Google Scholar 

  9. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. PNAS 103(7), 2015–2020 (2006)

    Article  MATH  Google Scholar 

  10. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3(4), 041022 (2013)

    Google Scholar 

  11. Du, W.B., Zhou, X.L., Lordan, O., Wang, Z., Zhao, C., Zhu, Y.B.: Analysis of the Chinese airline network as multi-layer networks. Transp. Res. Part E 89, 108–116 (2016)

    Article  Google Scholar 

  12. Fügenschuh, M., Gera, R., Lory, T.: A synthetic model for multilevel air transportation network. In: Proceedings of the Conference on OR, pp. 347–353 (2017)

    Google Scholar 

  13. Fügenschuh, M., Gera, R., Tagarelli, A.: ANGEL: a synthetic model for airline network generation emphasizing layers. IEEE Trans. Netw. Sci. Eng. 7, 1977–1987 (2020). https://doi.org/10.1109/TNSE.2020.2965207

    Article  Google Scholar 

  14. Guimera, R., Mossa, S., Turtschi, A., Amaral, L.N.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. PNAS 102(22), 7794–7799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guimera, R., Amaral, L.A.N.: Modeling the world-wide airport network. Eur. Phys. J. B 38(2), 381–385 (2004)

    Article  Google Scholar 

  16. Kim, J.Y., Goh, K.I.: Coevolution and correlated multiplexity in multiplex networks. Phys. Rev. Lett. 111(5), 058702 (2013)

    Article  Google Scholar 

  17. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  18. Li, W., Cai, X.: Statistical analysis of airport network of China. Phys. Rev. E 69(4), 046106 (2004)

    Article  Google Scholar 

  19. Nicosia, V., Bianconi, G., Latora, V., Barthelemy, M.: Growing multiplex networks. Phys. Rev. Lett. 111, 5 (2013)

    Article  Google Scholar 

  20. da Rocha, L.E.: Structural evolution of the Brazilian airport network. J. Complex Netw. 2009(4), P04020 (2009)

    MATH  Google Scholar 

  21. Wuellner, D.R., Roy, S., D’Souza, R.M.: Resilience and rewiring of the passenger airline networks in the United States. Phys. Rev. E 82(5), 056101 (2010)

    Article  Google Scholar 

  22. Zhou, Q., Yang, W., Zhu, J.: Mapping a multilayer air transport network with the integration of airway, route, and flight network. J. Appl. Math. 2019, 1–10 (2019). Article ID 8282954

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tagarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fügenschuh, M., Gera, R., Tagarelli, A. (2021). Topological Analysis of Synthetic Models for Air Transportation Multilayer Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-65351-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65351-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65350-7

  • Online ISBN: 978-3-030-65351-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics