Skip to main content

Analysis of a Finite Mixture of Truncated Zeta Distributions for Degree Distribution

  • Conference paper
  • First Online:
Complex Networks & Their Applications IX (COMPLEX NETWORKS 2020 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 944))

Included in the following conference series:

  • 2554 Accesses

Abstract

The power-law distribution has been widely used to describe the degree distribution of a network, especially when the range of degree is large. However, the deviation from such behavior appears when the range of degrees is small. Even worse, the conventional employment of the continuous power-law distribution usually causes an inaccurate inference as the degree should be discrete-valued. To remedy these obstacles, we propose a finite mixture model of truncated zeta distributions for a broad range of degrees that disobeys a power-law nature in a small degree range while maintaining the scale-free nature of a network. The maximum likelihood algorithm alongside the model selection method is presented to estimate model parameters and the number of mixture components. We apply our method on scientific collaboration networks with remarkable interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  3. Arnold, B.C.: Pareto Distributions. Chapman and Hall/CRC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A Stat. Mech. Appl. 272(1–2), 173–187 (1999)

    Article  Google Scholar 

  6. Bianconi, G., Barabási, A.L.: Competition and multiscaling in evolving networks. Europhys. Lett. 54(4), 436 (2001)

    Article  Google Scholar 

  7. Bollobás, B.E., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brent, R.P.: Algorithms for Minimization Without Derivatives. Courier Corporation (2013)

    Google Scholar 

  9. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorogovtsev, S.N., Mendes, J.F.F.: Effect of the accelerating growth of communications networks on their structure. Phys. Rev. E 63(2), 025101 (2001)

    Article  Google Scholar 

  11. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633 (2000)

    Article  Google Scholar 

  12. Fenner, T., Levene, M., Loizou, G.: A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff. Soc. Networks 29(1), 70–80 (2007)

    Article  Google Scholar 

  13. Garcıa, F., Garcıa, R., Padrino, J., Mata, C., Trallero, J., Joseph, D.: Power law and composite power law friction factor correlations for laminar and turbulent gas-liquid flow in horizontal pipelines. Int. J. Multiph. Flow 29(10), 1605–1624 (2003)

    Article  MATH  Google Scholar 

  14. Gillespie, C.: Fitting heavy tailed distributions: the powerlaw package. J. Stat. Softw. 64(2), 1–16 (2015)

    Article  Google Scholar 

  15. Jordan, J.: The degree sequences and spectra of scale-free random graphs. Random Struct. Algorithms 29(2), 226–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jung, H., Lee, J.G., Lee, N., Kim, S.H.: Comparison of fitness and popularity: fitness-popularity dynamic network model. J. Stat. Mech. 2018(12), 123403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jung, H., Lee, J.G., Lee, N., Kim, S.H.: Ptem: a popularity-based topical expertise model for community question answering. Ann. Appl. Stat. 14(3), 1304–1325 (2020)

    Article  MathSciNet  Google Scholar 

  18. Krapivsky, P.L., Redner, S.: Organization of growing random networks. Phys. Rev. E 63(6), 066123 (2001)

    Article  Google Scholar 

  19. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of 41st Annual Symposium on Foundation of Computer Science, pp. 57–65. IEEE (2000)

    Google Scholar 

  20. Mazzarisi, P., Barucca, P., Lillo, F., Tantari, D.: A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market. Eur. J. Oper. Res. 281(1), 50–65 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meibom, A., Balslev, I.: Composite power laws in shock fragmentation. Phys. Rev. Lett. 76(14), 2492 (1996)

    Article  Google Scholar 

  22. Mossa, S., Barthelemy, M., Stanley, H.E., Amaral, L.A.N.: Truncation of power law behavior in “scale-free” network models due to information filtering. Phys. Rev. Lett. 88(13), 138701 (2002)

    Article  Google Scholar 

  23. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Newman, M.E.: Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  Google Scholar 

  25. Prieto, F., Sarabia, J.M.: A generalization of the power law distribution with nonlinear exponent. Commun. Nonlinear Sci. Numer. Simul. 42, 215–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors thank Clarivate Analytics to provide the access to the raw data of the Web of Science database for research investigations via the international collaboration between the Institute of Statistical Mathematics (ISM) of Japan and the Institute of Statistical Science, Academia Sinica (ISSAS) of Taiwan. The authors also thank Ms. Ula Tzu-Ning Kung for her service on English editing to improve the quality of this paper. This work was supported partially by the thematic project (ASCEND) of Academia Sinica (Taiwan) grant number AS-109-TP-M07 and the Ministry of Science and Technology (Taiwan) grant numbers 107-2118-M-001-011-MY3 and 109-2321-B-001-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Kin Hing Phoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, H., Phoa, F.K.H. (2021). Analysis of a Finite Mixture of Truncated Zeta Distributions for Degree Distribution. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-65351-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65351-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65350-7

  • Online ISBN: 978-3-030-65351-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics