Skip to main content

Tuser3: A Profile Matching Based Algorithm Across Three Heterogeneous Social Networks

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12447))

Included in the following conference series:

  • 1556 Accesses

Abstract

Matching profiles can be defined as the process of determining whether two profiles in the same or different social networks are instances of the same user in real life or not. Because of the considerable increase in the number of created accounts in social networks, matching profiles across social networks has become a popular focus in a myriad of research works. Current methods in this field require accurate profile analysis to obtain a high user identification quality. However, such studies are restrictive since they do not consider the profile in its globality. In this work, we target the problem of user identification task based on their created profiles in social networks. Specifically, we conduct two main steps. First, we introduce a supervised model which employs the similarity of features for predicting matched profiles. Second, we propose Tuser3 algorithm to search for the correct matched target profile of a source user on three heterogeneous social networks based on several user profiles features. Our experiments show the effectiveness of our method in matching profiles across the three target social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.searchenginejournal.com/failed-social-media-sites/303421/.

  2. 2.

    http://www.ebizmba.com/articles/social-networking-websites.

  3. 3.

    short write up /‘bio’ /‘about me’ which the user provides about himself.

  4. 4.

    http://docs.tweepy.org/en/latest/.

  5. 5.

    https://pub.dev/packages/youtube_api.

  6. 6.

    https://pypi.org/project/PyTumblr/.

  7. 7.

    https://azure.micros.oftcom/en-us/services/cognitive-services/face/.

  8. 8.

    https://textblob.readthedocs.io/en/dev/.

References

  1. Shu, K., Wang, S., Tang, J., Zafarani, R., Liu, H.: User identity linkage across online social networks: a review. ACM SIGKDD Explor. Newslett. 18(2), 5–17 (2017)

    Article  Google Scholar 

  2. Farseev, A.: 360 user profile learning from multiple social networks for wellness and urban mobility applications Doctoral dissertation, National University of Singapore (2017)

    Google Scholar 

  3. Perito, D., Castelluccia, C., Kaafar, M.A., Manils, P.: How unique and traceable are usernames? In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_1

    Chapter  Google Scholar 

  4. Wang, Y., Liu, T., Tan, Q., Shi, J., Guo, L.: Identifying users across different sites using usernames. In: ICCS, vol. 2016, pp. 376–385, January 2016

    Google Scholar 

  5. Panchenko, A., Babaev, D., Obiedkov, S.: Large-scale parallel matching of social network profiles. In: Khachay, M.Y., Konstantinova, N., Panchenko, A., Ignatov, D.I., Labunets, V.G. (eds.) AIST 2015. CCIS, vol. 542, pp. 275–285. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26123-2_27

    Chapter  Google Scholar 

  6. Li, Y., Zhu, J., Zhou, Z., Zhou, B., Wu, X.: Connecting Chinese users across social media sites. In: 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Atlantis Press, August 2015

    Google Scholar 

  7. Liu, J., Zhang, F., Song, X., et al.: What’s in a name? An unsupervised approach to link users across communities. In : Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 495–504 (2013)

    Google Scholar 

  8. Zafarani, R., Liu, H.: Connecting users across social media sites: a behavioral-modeling approach. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2013)

    Google Scholar 

  9. Vosecky, J., Hong, D., Shen, V.Y.: User identification across multiple social networks. In: 2009 First International Conference on Networked Digital Technologies, pp. 360–365. IEEE, July 2009

    Google Scholar 

  10. Kucuk, V., Ayday, E.: Profile matching across unstructured online social networks

    Google Scholar 

  11. Malhotra, A., Totti, L., Meira, Jr., W., Kumaraguru, P., Almeida, V.: Studying user footprints in different online social networks. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1065–1070, August 2012

    Google Scholar 

  12. Bennacer, N., Nana Jipmo, C., Penta, A., Quercini, G.: Matching user profiles across social networks. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 424–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_29

    Chapter  Google Scholar 

  13. User profiles matching for different social networks based on faces identification (2019)

    Google Scholar 

  14. Li, Y., et al.: Matching user accounts based on user generated content across social networks. Future Gener. Comput. Syst. 83, 104–115 (2018)

    Google Scholar 

  15. Brounstein, T.R., et al.: Stylometric and temporal techniques for social media account resolution. No. SAND2017-2965C. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) (2017)

    Google Scholar 

  16. Keretna, S., Hossny, A., Creighton, D.: Recognizing user identity in twitter social networks via text mining. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3079–3082. IEEE, October 2013

    Google Scholar 

  17. Backes, M., et al.: On profile linkability despite anonymity in social media systems. In: Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society (2016)

    Google Scholar 

  18. Man, T., Shen, H., Liu, S., Jin, X., Cheng, X.: Predict anchor links across social networks via an embedding approach. In: IJCAI, vol. 16, pp. 1823–1829, July 2016

    Google Scholar 

  19. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: IJCAI, pp. 1774–1780, July 2016

    Google Scholar 

  20. Zhou, F., et al.: Deeplink: a deep learning approach for user identity linkage. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE (2018)

    Google Scholar 

  21. Koutra, D., Tong, H., Lubensky, D.: Big-align: fast bipartite graph alignment. In: 2013 IEEE 13th International Conference on Data Mining. IEEE (2013)

    Google Scholar 

  22. Zhang, Y., Tang, J., Yang, Z., Pei, J., Yu, P.S.: Cosnet: connecting heterogeneous social networks with local and global consistency. In: KDD (2015)

    Google Scholar 

  23. Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: CIKM (2013)

    Google Scholar 

  24. Mbarek, A., Jamoussi, S., Hamadou, A.B.: Tuser2: A new method for twitter and youtube matching profiles. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11684, pp. 110–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28374-2_10

    Chapter  Google Scholar 

  25. Musser, D.R., Nishanov, G.V.: A fast generic sequence matching algorithm. arXiv preprint arXiv:0810.0264(2008)

  26. Christen, P.: A comparison of personal name matching: techniques and practical issues. In: Sixth IEEE International Conference on Data Mining-Workshops (ICDMW 2006), pp. 290–294. IEEE, December 2006

    Google Scholar 

  27. Mbarek, A., et al.: Suicidal profiles detection in Twitter. In: WEBIST (2019)‏

    Google Scholar 

  28. Basti, R., et al.: Arabic Twitter user profiling: application to cyber security. In: WEBIST (2019)‏

    Google Scholar 

  29. Fast, E., Chen, B., Bernstein, M.S.: Empath: understanding topic signals in large-scale text. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (2016)‏

    Google Scholar 

  30. Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. arXiv preprint arXiv:2006.01963 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atika Mbarek , Salma Jamoussi or Abdelmajid BenHamadou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mbarek, A., Jamoussi, S., BenHamadou, A. (2020). Tuser3: A Profile Matching Based Algorithm Across Three Heterogeneous Social Networks. In: Yang, X., Wang, CD., Islam, M.S., Zhang, Z. (eds) Advanced Data Mining and Applications. ADMA 2020. Lecture Notes in Computer Science(), vol 12447. Springer, Cham. https://doi.org/10.1007/978-3-030-65390-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65390-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65389-7

  • Online ISBN: 978-3-030-65390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics