Skip to main content

GAN-Based Anomaly Detection In Imbalance Problems

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12540))

Included in the following conference series:

Abstract

Imbalance pre one of the key issues that affect the performance greatly. Our focus in this work is to address an imbalance problem arising from defect detection in industrial inspections, including the different number of defect and non-defect dataset, the gap of distribution among defect classes, and various sizes of defects. To this end, we adopt the anomaly detection method that is to identify unusual patterns to address such challenging problems. Especially generative adversarial network (GAN) and autoencoder-based approaches have shown to be effective in this field. In this work, (1) we propose a novel GAN-based anomaly detection model which consists of an autoencoder as the generator and two separate discriminators for each of normal and anomaly input; and (2) we also explore a way to effectively optimize our model by proposing new loss functions: Patch loss and Anomaly adversarial loss, and further combining them to jointly train the model. In our experiment, we evaluate our model on conventional benchmark datasets such as MNIST, Fashion MNIST, CIFAR 10/100 data as well as on real-world industrial dataset – smartphone case defects. Finally, experimental results demonstrate the effectiveness of our approach by showing the results of outperforming the current State-Of-The-Art approaches in terms of the average area under the ROC curve (AUROC).

J. Kim and K. Jeong—-Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  3. Beijbom, O., Edmunds, P.J., Kline, D.I., Mitchell, B.G., Kriegman, D.: Automated annotation of coral reef survey images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1170–1177. IEEE (2012)

    Google Scholar 

  4. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4183–4192 (2020)

    Google Scholar 

  5. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  6. Cardie, C., Howe, N.: Improving minority class prediction using case-specific feature weights (1997)

    Google Scholar 

  7. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019). arXiv preprint: arXiv:1901.03407

  8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  9. Chu, W., Xue, H., Yao, C., Cai, D.: Sparse coding guided spatiotemporal feature learning for abnormal event detection in large videos. IEEE Transactions on Multimedia 21(1), 246–255 (2018)

    Article  Google Scholar 

  10. Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., Kloft, M.: Image anomaly detection with generative adversarial networks. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_1

    Chapter  Google Scholar 

  11. Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks (2018). arXiv preprint arXiv:1803.07422

  12. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning From Imbalanced Data Sets. Springer, Heidelberg (2018)

    Book  Google Scholar 

  13. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, pp. 9758–9769 (2018)

    Google Scholar 

  14. Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Hengel, A.V.D.: Memorizing normality to detect anomaly: memory-augmented deep auto encoder for unsupervised anomaly detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  16. Grzymala-Busse, J.W., Goodwin, L.K., Grzymala-Busse, W.J., Zheng, X.: An Approach to imbalanced data sets based on changing rule strength. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing. Cognitive Technologies. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  17. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  18. Huang, C., Cao, J., Ye, F., Li, M., Zhang, Y., Lu, C.: Inverse-transform autoencoder for anomaly detection (2019). arXiv preprint: arXiv:1911.10676

  19. Johnson, B.A., Tateishi, R., Hoan, N.T.: A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees. Int. J. Rem. Sens. 34(20), 6969–6982 (2013)

    Article  Google Scholar 

  20. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 27 (2019)

    Article  Google Scholar 

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). arXiv preprint: arXiv:1312.6114

  22. Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imag. 4(2), 36 (2018)

    Article  Google Scholar 

  23. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  24. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  25. Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30(2–3), 195–215 (1998)

    Article  Google Scholar 

  26. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and prior class probabilities. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 299–313. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_15

    Chapter  Google Scholar 

  27. LeCun, Y.: The mnist database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  28. Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 42 (2018)

    Article  Google Scholar 

  29. Ling, C.X., Li, C.: Data mining for direct marketing: problems and solutions. KDD 98, 73–79 (1998)

    Google Scholar 

  30. Mac Namee, B., Cunningham, P., Byrne, S., Corrigan, O.I.: The problem of bias in training data in regression problems in medical decision support. Artif. Intell. Med. 24(1), 51–70 (2002)

    Article  Google Scholar 

  31. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  32. Markou, M., Singh, S.: Novelty detection: a review-part 2: neural network based approaches. Signal Process. 83(12), 2499–2521 (2003)

    Article  Google Scholar 

  33. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  34. Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E.: Imbalance problems in object detection: a review. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  35. Perera, P., Nallapati, R., Xiang, B.: OCGAN: One-class novelty detection using GANs with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2898–2906 (2019)

    Google Scholar 

  36. Philip, K., Chan, S.: Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection. In: Proceeding of the Fourth International Conference on Knowledge Discovery and Data Mining, pp. 164–168 (1998)

    Google Scholar 

  37. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)

    Article  Google Scholar 

  38. Radivojac, P., Chawla, N.V., Dunker, A.K., Obradovic, Z.: Classification and knowledge discovery in protein databases. J. Biomed. Inform. 37(4), 224–239 (2004)

    Article  Google Scholar 

  39. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  40. Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018)

    Google Scholar 

  41. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018)

    Google Scholar 

  42. Sakurada, M., Yairi, T.: Anomaly detection using auto-encoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, pp. 4–11 (2014)

    Google Scholar 

  43. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  44. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks 61, 85–117 (2015)

    Article  Google Scholar 

  45. Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., Yang, Y.: adVAE: a self-adversarial variational auto-encoder with Gaussian anomaly prior knowledge for anomaly detection. Knowl. Based Syst. 190, 105187 (2020)

    Article  Google Scholar 

  46. Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions for unsupervised outlier removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1519 (2015)

    Google Scholar 

  47. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017). arXiv preprint: arXiv:1708.07747

  48. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. IEEE (2010)

    Google Scholar 

  49. Xu, K., Jiang, X., Sun, T.: Anomaly detection based on stacked sparse coding with intra-frame classification strategy. IEEE Trans. Multimed. 20(5), 1062–1074 (2018)

    Article  Google Scholar 

  50. Xu, K., Sun, T., Jiang, X.: Video anomaly detection and localization based on an adaptive intra-frame classification network. IEEE Trans. Multimed. 22(2), 394–406 (2019)

    Article  Google Scholar 

  51. Yamanaka, Y., Iwata, T., Takahashi, H., Yamada, M., Kanai, S.: Auto-encoding binary classifiers for supervised anomaly detection. In: Pacific Rim International Conference on Artificial Intelligence, pp. 647–659. Springer, Cham (2019)

    Google Scholar 

  52. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection (2018). arXiv preprint: arXiv:1802.06222

  53. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection (2016). arXiv preprint: arXiv:1605.07717

  54. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. knowl. Data Eng. 18(1), 63–77 (2005)

    Article  Google Scholar 

  55. Zong, B., et al.: Deep auto-encoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Research Foundation of Korea Grant funded by the Korea government (NRF-2019R1F1A1056135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisung Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J., Jeong, K., Choi, H., Seo, K. (2020). GAN-Based Anomaly Detection In Imbalance Problems. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65414-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65413-9

  • Online ISBN: 978-3-030-65414-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics