Skip to main content

Towards Confirmable Automated Plant Cover Determination

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

Changes in plant community composition reflect environmental changes like in land-use and climate. While we have the means to record the changes in composition automatically nowadays, we still lack methods to analyze the generated data masses automatically.

We propose a novel approach based on convolutional neural networks for analyzing the plant community composition while making the results explainable for the user. To realize this, our approach generates a semantic segmentation map while predicting the cover percentages of the plants in the community. The segmentation map is learned in a weakly supervised way only based on plant cover data and therefore does not require dedicated segmentation annotations.

Our approach achieves a mean absolute error of 5.3% for plant cover prediction on our introduced dataset with 9 herbaceous plant species in an imbalanced distribution, and generates segmentation maps, where the location of the most prevalent plants in the dataset is correctly indicated in many images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.idiv.de/en/research/platforms_and_networks/idiv_ecotron/experiments/insect_armageddon.html

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Aggemyr, E., Cousins, S.A.: Landscape structure and land use history influence changes in island plant composition after 100 years. J. Biogeogr. 39(9), 1645–1656 (2012)

    Article  Google Scholar 

  3. Ahn, J., Cho, S., Kwak, S.: Weakly supervised learning of instance segmentation with inter-pixel relations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2209–2218. IEEE (2019)

    Google Scholar 

  4. Barré, P., Stöver, B.C., Müller, K.F., Steinhage, V.: LeafNet: a computer vision system for automatic plant species identification. Ecol. Inform. 40, 50–56 (2017)

    Article  Google Scholar 

  5. Bernhardt-Römermann, M., et al.: Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Change Biol. 21(10), 3726–3737 (2015)

    Article  Google Scholar 

  6. Bruelheide, H., et al.: Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2(12), 1906–1917 (2018)

    Article  Google Scholar 

  7. Bucher, S.F., König, P., Menzel, A., Migliavacca, M., Ewald, J., Römermann, C.: Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecol. Evol. 8(2), 1147–1158 (2018)

    Article  Google Scholar 

  8. Chollet, F., et al.: Keras (2015). https://keras.io

  9. Cleland, E.E., et al.: Phenological tracking enables positive species responses to climate change. Ecology 93(8), 1765–1771 (2012)

    Article  Google Scholar 

  10. Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1635–1643. IEEE (2015)

    Google Scholar 

  11. Eisenhauer, N., Türke, M.: From climate chambers to biodiversity chambers. Front. Ecol. Environ. 16(3), 136–137 (2018)

    Article  Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  13. Fitter, A., Fitter, R.: Rapid changes in flowering time in British plants. Science 296(5573), 1689–1691 (2002)

    Article  Google Scholar 

  14. Gerstner, K., Dormann, C.F., Stein, A., Manceur, A.M., Seppelt, R.: Editor’s choice: review: effects of land use on plant diversity-a global meta-analysis. J. Appl. Ecol. 51(6), 1690–1700 (2014)

    Article  Google Scholar 

  15. Ghazi, M.M., Yanikoglu, B., Aptoula, E.: Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228–235 (2017)

    Article  Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. IEEE (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  18. Huang, Z., Wang, X., Wang, J., Liu, W., Wang, J.: Weakly-supervised semantic segmentation network with deep seeded region growing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7014–7023. IEEE (2018)

    Google Scholar 

  19. Idrees, H., et al.: Composition loss for counting, density map estimation and localization in dense crowds. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 544–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_33

    Chapter  Google Scholar 

  20. Kattenborn, T., Eichel, J., Wiser, S., Burrows, L., Fassnacht, F.E., Schmidtlein, S.: Convolutional neural networks accurately predict cover fractions of plant species and communities in unmanned aerial vehicle imagery. Remote Sen. Ecol. Conserv. (2020)

    Google Scholar 

  21. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 876–885. IEEE (2017)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  23. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  25. Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: Plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 452–456. IEEE (2015)

    Google Scholar 

  26. Li, K., Malik, J.: Amodal instance segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 677–693. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_42

    Chapter  Google Scholar 

  27. Liu, H., et al.: Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Nat. Acad. Sci. 115(16), 4051–4056 (2018)

    Article  Google Scholar 

  28. Liu, L., Qiu, Z., Li, G., Liu, S., Ouyang, W., Lin, L.: Crowd counting with deep structured scale integration network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1774–1783. IEEE (2019)

    Google Scholar 

  29. Lloret, F., Peñuelas, J., Prieto, P., Llorens, L., Estiarte, M.: Plant community changes induced by experimental climate change: seedling and adult species composition. Perspect. Plant Ecol. Evol. Systemat. 11(1), 53–63 (2009)

    Article  Google Scholar 

  30. Van der Maarel, E., Franklin, J.: Vegetation Ecology. Wiley, Hoboken (2012)

    Google Scholar 

  31. Menzel, A., et al.: European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12(10), 1969–1976 (2006)

    Article  Google Scholar 

  32. Miller-Rushing, A.J., Primack, R.B.: Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology 89(2), 332–341 (2008)

    Article  Google Scholar 

  33. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1796–1804. IEEE (2015)

    Google Scholar 

  34. Pfadenhauer, J.: Vegetationsökologie - ein Skriptum. IHW-Verlag, Eching, 2. verbesserte und erweiterte auflage edn. (1997)

    Google Scholar 

  35. Purkait, P., Zach, C., Reid, I.: Seeing behind things: extending semantic segmentation to occluded regions. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1998–2005. IEEE (2019)

    Google Scholar 

  36. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  37. Rosenzweig, C., et al.: Assessment of observed changes and responses in natural and managed systems. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 79–131 (2007)

    Google Scholar 

  38. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  39. Souza, L., Zelikova, T.J., Sanders, N.J.: Bottom-up and top-down effects on plant communities: nutrients limit productivity, but insects determine diversity and composition. Oikos 125(4), 566–575 (2016)

    Article  Google Scholar 

  40. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826. IEEE (2016)

    Google Scholar 

  42. Türke, M., et al.: Multitrophische biodiversitätsmanipulation unter kontrollierten umweltbedingungen im idiv ecotron. In: Lysimetertagung, pp. 107–114 (2017)

    Google Scholar 

  43. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778. IEEE (2018)

    Google Scholar 

  44. Verheyen, K., et al.: Combining biodiversity resurveys across regions to advance global change research. Bioscience 67(1), 73–83 (2017)

    Article  Google Scholar 

  45. Wäldchen, J., Mäder, P.: Flora incognita-wie künstliche intelligenz die pflanzenbestimmung revolutioniert: Botanik. Biologie unserer Zeit 49(2), 99–101 (2019)

    Article  Google Scholar 

  46. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12275–12284. IEEE (2020)

    Google Scholar 

  47. Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.: From open set to closed set: counting objects by spatial divide-and-conquer. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8362–8371. IEEE (2019)

    Google Scholar 

  48. Yalcin, H., Razavi, S.: Plant classification using convolutional neural networks. In: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–5. IEEE (2016)

    Google Scholar 

  49. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480. IEEE (2017)

    Google Scholar 

  50. Zhan, X., Pan, X., Dai, B., Liu, Z., Lin, D., Loy, C.C.: Self-supervised scene de-occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3784–3792. IEEE (2020)

    Google Scholar 

Download references

Acknowledgements

Matthias Körschens thanks the Carl Zeiss Foundation for the financial support. In addition, we would like to thank Mirco Migliavacca for additional comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Körschens .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1292 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Körschens, M., Bodesheim, P., Römermann, C., Bucher, S.F., Ulrich, J., Denzler, J. (2020). Towards Confirmable Automated Plant Cover Determination. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65414-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65413-9

  • Online ISBN: 978-3-030-65414-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics