Skip to main content

Remix: Rebalanced Mixup

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12540))

Included in the following conference series:

Abstract

Deep image classifiers often perform poorly when training data are heavily class-imbalanced. In this work, we propose a new regularization technique, Remix, that relaxes Mixup’s formulation and enables the mixing factors of features and labels to be disentangled. Specifically, when mixing two samples, while features are mixed in the same fashion as Mixup, Remix assigns the label in favor of the minority class by providing a disproportionately higher weight to the minority class. By doing so, the classifier learns to push the decision boundaries towards the majority classes and balance the generalization error between majority and minority classes. We have studied the state-of-the art regularization techniques such as Mixup, Manifold Mixup and CutMix under class-imbalanced regime, and shown that the proposed Remix significantly outperforms these state-of-the-arts and several re-weighting and re-sampling techniques, on the imbalanced datasets constructed by CIFAR-10, CIFAR-100, and CINIC-10. We have also evaluated Remix on a real-world large-scale imbalanced dataset, iNaturalist 2018. The experimental results confirmed that Remix provides consistent and significant improvements over the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berthelot, D., Carlini, N., Goodfellow, I.G., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  2. Bowyer, K.W., Chawla, N.V., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  3. Bulò, S.R., Neuhold, G., Kontschieder, P.: Loss max-pooling for semantic image segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7082–7091 (2017)

    Google Scholar 

  4. Byrd, J., Lipton, Z.C.: What is the effect of importance weighting in deep learning? In: ICML (2018)

    Google Scholar 

  5. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  6. Chung, Y.A., Lin, H.T., Yang, S.W.: Cost-aware pre-training for multiclass cost-sensitive deep learning. In: IJCAI (2015)

    Google Scholar 

  7. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)

    Google Scholar 

  8. Darlow, L.N., Crowley, E., Antoniou, A., Storkey, A.J.: CINIC-10 is not imagenet or CIFAR-10. ArXiv abs/1810.03505 (2018)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  10. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  11. Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI (2001)

    Google Scholar 

  12. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)

    Google Scholar 

  13. Horn, G.V., et al.: The iNaturalist species classification and detection dataset. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2017)

    Google Scholar 

  14. Horn, G.V., Perona, P.: The devil is in the tails: Fine-grained classification in the wild. ArXiv abs/1709.01450 (2017)

    Google Scholar 

  15. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5375–5384 (2016)

    Google Scholar 

  16. Kim, J., Jeong, J., Shin, J.: Imbalanced classification via adversarial minority over-sampling. In: OpenReview (2019). https://openreview.net/pdf?id=HJxaC1rKDS

  17. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=r1Ddp1-Rb

  18. Lample, G., Ott, M., Conneau, A., Denoyer, L., Ranzato, M.: Phrase-based & neural unsupervised machine translation. In: EMNLP (2018)

    Google Scholar 

  19. Lan, Z.Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite bert for self-supervised learning of language representations. ArXiv abs/1909.11942 (2019)

    Google Scholar 

  20. Li, Z., et al.: Learning the depths of moving people by watching frozen people. In: CVPR (2019)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  22. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6738–6746 (2017)

    Google Scholar 

  23. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML (2016)

    Google Scholar 

  24. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)

    Google Scholar 

  25. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  28. van Steenkiste, S., Greff, K., Schmidhuber, J.: A perspective on objects and systematic generalization in model-based RL. ArXiv abs/1906.01035 (2019)

    Google Scholar 

  29. Takahashi, R., Matsubara, T., Uehara, K.: Ricap: random image cropping and patching data augmentation for deep CNNs. In: Proceedings of The 10th Asian Conference on Machine Learning (2018)

    Google Scholar 

  30. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.E.: On mixup training: improved calibration and predictive uncertainty for deep neural networks. In: NeurIPS (2019)

    Google Scholar 

  31. Tianyu Pang, K.X., Zhu, J.: Mixup inference: better exploiting mixup to defend adversarial attacks. In: ICLR (2020)

    Google Scholar 

  32. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6438–6447. PMLR, Long Beach, California, USA, 09–15 Jun 2019. http://proceedings.mlr.press/v97/verma19a.html

  33. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: IJCAI (2019)

    Google Scholar 

  34. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4368–4374 (2016)

    Google Scholar 

  35. Wang, T.C., et al.: Video-to-video synthesis. In: NeurIPS (2018)

    Google Scholar 

  36. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  37. Zhang, H., Cissé, M., Dauphin, Y., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

  38. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Ping Chou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 168 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chou, HP., Chang, SC., Pan, JY., Wei, W., Juan, DC. (2020). Remix: Rebalanced Mixup. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65414-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65413-9

  • Online ISBN: 978-3-030-65414-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics