Skip to main content

Reliability and Security for Safety-Critical Service Compositions

  • Conference paper
  • First Online:
Information Systems Security (ICISS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12553))

Included in the following conference series:

  • 778 Accesses

Abstract

Service composition represents the combination of individual distributed services, which are operated by different organizations. A composite service may include security or safety-critical services, which could have a serious impact on individuals and thus, require correctness of generated outputs as a crucial property. For this reason, service composition systems must avoid a manipulation of critical services and have to guarantee high reliability of computed outputs as well as availability. Secure multiparty computation and verifiable secret sharing enables a privacy-preserving computation of service outputs jointly generated by several parties, which makes it possible to prevent a single point of failure for critical services and guarantees correctness of a generated output. In this work, we introduce a concept for privacy-preserving and reliable service compositions through the application of secure multiparty computation in combination with threshold signatures. Threshold signatures make it possible to define a maximum number of allowed unavailable actors, which do not participate in the mulitparty computation protocol. This mechanism enables a flexible definition of security or safety requirements for critical services. The feasibility of the proposed solution is demonstrated by an implemented proof-of-concept for a composite medical alert service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/jwtk/jjwt.

  2. 2.

    https://github.com/jasonkresch/protect.

  3. 3.

    https://github.com/Archistar/archistar-smc.

References

  1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. In: IEEE Computer Society Press Los Alamitos, vol. 40, pp. 38–45 (2007)

    Google Scholar 

  2. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11

    Chapter  Google Scholar 

  3. Jung, C., Lee, S.J.: Design of automatic insulin injection system with Continuous Glucose Monitoring (CGM) signals, pp. 102–105 (2016)

    Google Scholar 

  4. Fokkink, W.: Introduction to Process Algebra. Springer, New York (2000). https://doi.org/10.1007/978-3-662-04293-9

    Book  MATH  Google Scholar 

  5. Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-69968-9

    Book  MATH  Google Scholar 

  6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Adison Wesley Publishing Company, Boston (1979)

    MATH  Google Scholar 

  7. Campos, G.M.M., Rosa, N.S., Pires, L.F.: A survey of formalization approaches to service composition. In: IEEE International Conference on Services Computing (2014)

    Google Scholar 

  8. Viriyasitavat, W., Da Xu, L., Bi, Z., Sapsomboon, A.: Blockchain-based business process management (BPM) framework for service composition in industry 4.0. J. Intell. Manuf. 31, 1737–1748 (2018). https://doi.org/10.1007/s10845-018-1422-y

  9. Yu, C., Zhang, L., Zhao, W., Zhang, S.: A blockchain-based service composition architecture in cloud manufacturing. Int. J. Comput. Integr. Manuf. 1–11 (2019)

    Google Scholar 

  10. Carminati, B., Rondanini, C., Ferrari, E.: Confidential business process execution on blockchain. In: IEEE International Conference on Web Services (ICWS), pp. 58–65 (2018)

    Google Scholar 

  11. Song, X., Wang, Y.: Homomorphic cloud computing scheme based on hybrid homomorphic encryption. In: International Conference on Computer and Communications (2017)

    Google Scholar 

  12. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  13. Cramer, R., Damgard, I., Nielsen, J.P.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press (2015). https://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB%5C&isbn=9781107043053

  14. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_35

    Chapter  Google Scholar 

  15. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2), 87–95 (1993). https://doi.org/10.1007/BF02620136

    Article  MathSciNet  MATH  Google Scholar 

  16. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC 1989: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85 (1989)

    Google Scholar 

  17. Patra, A., Choudhury, A., Rangan, P.C.: Efficient asynchronous verifiable secret sharing and multiparty computation. J. Cryptol. 28, 49–109 (2015). https://doi.org/10.1007/s00145-013-9172-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Wiener, F.: Threshold Signatures: Security for the Libra Digital Asset Era. Whitepaper (2019)

    Google Scholar 

  19. Stathakopoulou, C., Cachin, C.: Threshold Signatures for Blockchain Systems. IBM Computer Science Research Report (2017)

    Google Scholar 

  20. Demirel, D., Schabhueser, L., Buchmann, J.: Privately and Publicly Verifiable Computing Techniques. SpringerBriefs in Computer Science. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53798-6

    Book  Google Scholar 

  21. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  22. Gaaloul, W., Bhiri, S., Rouchached, M.: Event-based design and runtime verification of composite service transactional behavior. IEEE Trans. Serv. Comput. 3, 32–45 (2010)

    Article  Google Scholar 

  23. Hamel, L., Graiet, M., Gaaloul, W.: Event-B formalisation of web services for dynamic composition. In: International Conference on Semantics, Knowledge and Grids (2012)

    Google Scholar 

  24. Graiet, M., Abbassi, I., Hamel, L.: Event-B based approach for verifying dynamic composite service transactional behavior. In: IEEE 20th International Conference on Web Services (2013)

    Google Scholar 

  25. Carminati, B., Ferrari, E. Rondanini, C.: Blockchain as a platform for secure inter-organizational business processes. In: IEEE 4th International Conference on Collaboration and Internet Computing (2018)

    Google Scholar 

  26. Kogos, K.G., Filippova, K.S., Epishkina, A.V.: Fully homomorphic encryption schemes: the state of the art. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (2017)

    Google Scholar 

  27. Castro, M., Liskov, B.: Proactive recovery in a Byzantine-fault-tolerant system. In: OSDI 2000: Proceedings of the 4th Conference on Symposium on Operating System Design & Implementation (2000)

    Google Scholar 

  28. Viriyasitavat, W., Hoonsopon, D.: Blockchain characteristics and consensus in modern business processes. J. Ind. Inf. Integr. 13, 32–39 (2018)

    Google Scholar 

  29. Loruenser, T., Happe, A., Slamanig, D.: ARCHISTAR: towards secure and robust cloud based data sharing. In: IEEE Cloud Computing Technology and Science, CloudCom 2015, pp. 371–378 (2016)

    Google Scholar 

  30. Dang, H.T., Canini, M., Pedone, F., Soule, R.: Paxos Made Switch-y. In: ACM SIGCOMM Computer Communication Review, pp. 18–24 (2016)

    Google Scholar 

  31. Renesse, R.V., Altinbuken, D.: Paxos made moderately complex. In: ACM Computing Surveys (2015)

    Google Scholar 

  32. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning about distributed protocols. In: Proceedings of the ACM on Programming Languages (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Theuermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theuermann, K. (2020). Reliability and Security for Safety-Critical Service Compositions. In: Kanhere, S., Patil, V.T., Sural, S., Gaur, M.S. (eds) Information Systems Security. ICISS 2020. Lecture Notes in Computer Science(), vol 12553. Springer, Cham. https://doi.org/10.1007/978-3-030-65610-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65610-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65609-6

  • Online ISBN: 978-3-030-65610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics