Skip to main content

Modeling and Investigation of the Movement of the User of Augmented Reality Service

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

In recent years, the use of augmented reality (AR) applications in various industries and spheres of human life has increased significantly. With the appearance of new AR devices and the development of technology, the mobility of users has increased and the possibilities of using AR have expanded. This leads to the need to develop new AR user traffic models taking into account the features of its movement. The paper presents the results of an investigation of the movement of the user of augmented reality services. Augmented reality user movement models have been developed and a detailed analysis of the influence of user behavior on AR traffic parameters and the quality of experience of AR services has been carried out. The generalized augmented reality user movement model is based on experimental data and can be used in the future for modeling and implementation of AR services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Shuwaili, A., Simeone, O.: Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wirel. Commun. Lett. 6(3), 398–401 (2017). https://doi.org/10.1109/lwc.2017.2696539

    Article  Google Scholar 

  2. Chatzopoulos, D., Bermejo, C., Huang, Z., Hui, P.: Mobile augmented reality survey: from where we are to where we go. IEEE Access 5, 6917–6950 (2017). https://doi.org/10.1109/access.2017.2698164

    Article  Google Scholar 

  3. Chen, H., Dai, Y., Meng, H., Chen, Y., Li, T.: Understanding the characteristics of mobile augmented reality applications. In: 2018 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, April 2018. https://doi.org/10.1109/ispass.2018.00026

  4. Chen, H., Dai, Y., Xue, R., Zhong, K., Li, T.: Towards efficient microarchitecture design of simultaneous localization and mapping in augmented reality era. In: 2018 IEEE 36th International Conference on Computer Design (ICCD). IEEE, October 2018. https://doi.org/10.1109/iccd.2018.00066

  5. Ellejmi, M., Bagassi, S., Persiani, A.: Evaluation of augmented reality tools for the provision of tower air traffic control using an ecological interface design. In: 2018 Modeling and Simulation Technologies Conference. American Institute of Aeronautics and Astronautics, June 2018. https://doi.org/10.2514/6.2018-2939

  6. Ferrer, L., Garcia-Mancilla, J., Gonzalez, V.M., Bermudez, S., Bleier, P., Prieto, C.: Using augmented reality in urban context: georeferenced system for business localization using Google glass. In: 2015 IEEE First International Smart Cities Conference (ISC2). IEEE, October 2015. https://doi.org/10.1109/isc2.2015.7366157

  7. Futahi, A., Paramonov, A., Koucheryavy, A.: Wireless sensor networks with temporary cluster head nodes. In: 2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, January 2016. https://doi.org/10.1109/icact.2016.7423362

  8. Galinina, O., Tabassum, H., Mikhaylov, K., Andreev, S., Hossain, E., Koucheryavy, Y.: On feasibility of 5G-grade dedicated RF charging technology for wireless-powered wearables. IEEE Wirel. Commun. 23(2), 28–37 (2016). https://doi.org/10.1109/mwc.2016.7462482

    Article  Google Scholar 

  9. Kaklauskas, A., Krutinis, M., Petkov, P., Kovachev, L., Bartkiene, L.: Housing health and safety decision support system with augmented reality. InImpact: J. Innov. Impact 6(1), 131 (2016)

    Google Scholar 

  10. Koucheryavy, A., Makolkina, M., Paramonov, A.: Applications of augmented reality traffic and quality requirements study and modeling. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 241–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_22

    Chapter  Google Scholar 

  11. Li, W., Zhao, Y., Lu, S., Chen, D.: Mechanisms and challenges on mobility-augmented service provisioning for mobile cloud computing. IEEE Commun. Mag. 53(3), 89–97 (2015). https://doi.org/10.1109/mcom.2015.7060487

    Article  Google Scholar 

  12. Makolkina, M., Koucheryavy, A., Paramonov, A.: The models of moving users and IoT devices density investigation for augmented reality applications. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 671–682. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_64

    Chapter  Google Scholar 

  13. Makolkina, M., Vikulov, A., Paramonov, A.: The augmented reality service provision in D2D network. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 281–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66836-9_24

    Chapter  Google Scholar 

  14. Makolkina, M., Koucheryavy, A., Paramonov, A.: Investigation of traffic pattern for the augmented reality applications. In: Koucheryavy, Y., Mamatas, L., Matta, I., Ometov, A., Papadimitriou, P. (eds.) WWIC 2017. LNCS, vol. 10372, pp. 233–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61382-6_19

    Chapter  Google Scholar 

  15. de Oliveira, L.C., Andrade, A.O., de Oliveira, E.C., Soares, A., Cardoso, A., Lamounier, E.: Indoor navigation with mobile augmented reality and beacon technology for wheelchair users. In: 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE (2017). https://doi.org/10.1109/bhi.2017.7897199

  16. Ometov, A., et al.: Toward trusted, social-aware D2D connectivity: bridging across the technology and sociality realms. IEEE Wirel. Commun. 23(4), 103–111 (2016). https://doi.org/10.1109/mwc.2016.7553033

    Article  Google Scholar 

  17. Petrov, V., et al.: Vehicle-based relay assistance for opportunistic crowdsensing over narrowband IoT (NB-IoT). IEEE Internet Things J. 5(5), 3710–3723 (2018). https://doi.org/10.1109/jiot.2017.2670363

    Article  Google Scholar 

  18. Qiu, H., Ahmad, F., Govindan, R., Gruteser, M., Bai, F., Kar, G.: Augmented vehicular reality. In: Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications. ACM, February 2017. https://doi.org/10.1145/3032970.3032976

  19. Quandt, M., Knoke, B., Gorldt, C., Freitag, M., Thoben, K.D.: General requirements for industrial augmented reality applications. Procedia CIRP 72, 1130–1135 (2018). https://doi.org/10.1016/j.procir.2018.03.061

    Article  Google Scholar 

  20. Rashid, Z., Melià-Seguí, J., Pous, R., Peig, E.: Using augmented reality and internet of things to improve accessibility of people with motor disabilities in the context of smart cities. Future Gener. Comput. Syst. 76, 248–261 (2017). https://doi.org/10.1016/j.future.2016.11.030

    Article  Google Scholar 

  21. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017). https://doi.org/10.1109/mcom.2017.1600863

    Article  Google Scholar 

  22. Chen, X., Liu, X., Xu, P.: IOT-based air pollution monitoring and forecasting system. In: 2015 International Conference on Computer and Computational Sciences (ICCCS). IEEE, January 2015. https://doi.org/10.1109/iccacs.2015.7361361

  23. Younes, G., et al.: Virtual and augmented reality for rich interaction with cultural heritage sites: a case study from the Roman Theater at byblos. Digit. Appl. Archaeol. Cult. Herit. 5, 1–9 (2017). https://doi.org/10.1016/j.daach.2017.03.002

    Article  Google Scholar 

Download references

Acknowledgment

The publication has been prepared with the support of the “RUDN University Program 5-100”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Paramonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makolkina, M., Paramonov, A. (2020). Modeling and Investigation of the Movement of the User of Augmented Reality Service. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12525. Springer, Cham. https://doi.org/10.1007/978-3-030-65726-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65726-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65725-3

  • Online ISBN: 978-3-030-65726-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics