Skip to main content

Study of the Accuracy of Determining the Location of Radio Emission Sources with Complex Signals When Using Autocorrelation and Matrix Receivers in Broadband Tools for Analyzing the Electronic Environment

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

The article presents a study of the accuracy of determining the location of radio emission sources when using autocorrelation and matrix receivers in the spectrum management systems for the reception and processing of complex broadband signals. The ratio of the root mean square errors of determining the location of the radio emission sources using the autocorrelation and matrix receivers is calculated. In addition, the article establishes the feasibility of using an autocorrelation and matrix receivers for various methods for determining the position of a radio emission source. Results of the studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ateya, A.A., Muthanna, A., Vybornova, A., Darya, P., Koucheryavy, A.: Energy - aware offloading algorithm for multi-level cloud based 5G system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_33

    Chapter  Google Scholar 

  2. Simonov, A., Fokin, G., Sevidov, V., Sivers, M., Dvornikov, S.: Polarization direction finding method of interfering radio emission sources. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 208–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_18

    Chapter  Google Scholar 

  3. Pirmagomedov, R., Blinnikov, M., Kirichek, R., Koucheryavy, A.: Wireless nanosensor network with flying gateway. In: Chowdhury, K.R., Di Felice, M., Matta, I., Sheng, B. (eds.) WWIC 2018. LNCS, vol. 10866, pp. 258–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02931-9_21

    Chapter  Google Scholar 

  4. Garnaev, A., Trappe, W., Petropulu, A.: A prospect theoretic look at a joint radar and communication system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 483–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_43

    Chapter  Google Scholar 

  5. Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Slobodyan, M.G.: Features of the development of transceivers for information and communication systems considering the distribution of radar operating frequencies in the frequency range. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 509–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_45

    Chapter  Google Scholar 

  6. Podstrigaev, A.S., Davydov, R.V., Rud, V.Yu., Davydov, V.V.: Features of transmission of intermediate frequency signals over fiber-optical communication system in radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 624–630. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_56

    Chapter  Google Scholar 

  7. Anderson, G.W., Webb, D.C., Spezio, A.E., Lee, J.N.: Advanced channelization technology for RF, microwave, and millimeterwave applications. Proc. IEEE 79(3), 355–388 (1991)

    Article  Google Scholar 

  8. Grover, R.K.: Disrupting the Net. ECM against Advanced Radars. Signal, no. 3, pp. 10–13 (1978)

    Google Scholar 

  9. Tsui, J.: Special Design Topics in Digital Wideband Receivers (2010)

    Google Scholar 

  10. Tsui, J.: Digital Techniques for Wideband Receivers (2004)

    Google Scholar 

  11. Poisel, R.: Electronic Warfare Target Location Methods. Artech House, Norwood (2005)

    Google Scholar 

  12. Zekavat, R., Michael Buehrer, R.: Handbook of Position Location: Theory, Practice, and Advances, 1376 p. Wiley-IEEE Press, Hoboken (2019)

    Google Scholar 

  13. Poisel R. Electronic Warfare Receivers and Receiver Systems-Artech (2014)

    Google Scholar 

  14. Helton, J., Chen, C.-I.H., Lin, D.M., Tsui, J.B.Y.: FPGA-based 1.2 GHz bandwidth digital instantaneous frequency measurement receiver. In: 9th International Symposium on Quality Electronic Design (2008)

    Google Scholar 

  15. Darvin, Ch.R., Paranjape, H., Mohanan, S.K., Elango, V.: Analysis of autocorrelation based frequency measurement algorithm for IFM receivers. In: 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (2014)

    Google Scholar 

  16. Mahlooji, S., Mohammadi, K.: Very high resolution digital instantaneous frequency measurement receiver. In: 2009 International Conference on Signal Processing Systems (2009). https://doi.org/10.1109/icsps.2009.43

  17. Lee, Y.-H.G., Helton, J., Chen, C.-I.H.: Real-time FPGA-based implementation of digital instantaneous frequency measurement receiver. In: 2008 IEEE International Symposium on Circuits and Systems (2008). https://doi.org/10.1109/iscas.2008.4541962

  18. Friedlander, B.: A passive localization algorithm and its accuracy analysis. IEEE J. Ocean. Eng. 12(1), 234–245 (1987)

    Article  Google Scholar 

  19. Jorrieri, D.J.: Statistical theory of passive location system. IEEE Trans. Aerosp. Electron. Syst. AES-20(2), 183–198 (1984)

    Google Scholar 

  20. Chen, C.K., Gardner, W. A.: Signal selective time-difference-of-arrival estimation for passive location of manmade signal sources in highly corruptive environments Part II: algorithms and performance. IEEE Trans. Sig. Process. 40, 1185–1197 (1992)

    Google Scholar 

  21. Kupper, A.: Location-based Services: Fundamentals and Operation. Wiley, Hoboken (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Podstrigaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Likhachev, V.P., Podstrigaev, A.S., Nhan, N.T., Davydov, V.V., Myazin, N.S. (2020). Study of the Accuracy of Determining the Location of Radio Emission Sources with Complex Signals When Using Autocorrelation and Matrix Receivers in Broadband Tools for Analyzing the Electronic Environment. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12525. Springer, Cham. https://doi.org/10.1007/978-3-030-65726-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65726-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65725-3

  • Online ISBN: 978-3-030-65726-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics