Skip to main content

Study of Detection Characteristics in Recognition of Simple Radio Pulses and Signals with LFM and PSK in the Autocorrelation Receiver

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

The article offers both method and device for signal detection with recognition of modulation type. Using simulation methods, the detection characteristics of the developed device in case of simple and complex signals are obtained. Complex signals are signals with linear-frequency modulation or binary phase-shift keying. In addition, the article compares the sensitivity of the device when detecting and recognizing signals of various types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Tsui, J., Cheng, C.-H.: Digital Techniques for Wideband Receivers, p. 608. SciTech Publishing Inc., New York, United States (2015)

    Book  Google Scholar 

  2. Makolkina, M., Pham, V.D., Kirichek, R., Gogol, A., Koucheryavy, A.: Interaction of AR and IoT applications on the basis of hierarchical cloud services. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 547–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_49

    Chapter  Google Scholar 

  3. Zaugg, E.C., Edwards, M.C., Margulis, A.: The SlimSAR: a small, multi-frequency, synthetic aperture radar for UAS operation. In: 9th IEEE International Radar Conference, pp. 277–282 (2010)

    Google Scholar 

  4. Bystrov, V.V., Likhachev, V.P., Ryazantsev, L.B.: Experimental check of the coherence of radiolocation signals from objects with nonlinear electrical properties. Meas. Tech. 57(9), 1073–1076 (2014). https://doi.org/10.1007/s11018-014-0582-1

    Article  Google Scholar 

  5. Duersch, M.I.: BYU MICRO-SAR: A Very Small, Low-Power LFM-CW SAR. A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science (2004)

    Google Scholar 

  6. Simonov, A., Fokin, G., Sevidov, V., Sivers, M., Dvornikov, S.: Polarization direction finding method of interfering radio emission sources. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART-2019. LNCS, vol. 11660, pp. 208–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_18

    Chapter  Google Scholar 

  7. Kirichek, R., DInh, T.D., Pham, V.D., Le, D.T., Koucheryavy, A.: Positioning methods based on flying network for emergencies. In: 22nd International Conference on Advanced Communications Technology (ICACT 2020). Phoenix ParkPyeongchang (South Korea), 9061217, pp. 245–250 (2020)

    Google Scholar 

  8. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  9. Al-Bahri, M., Ruslan, K., Aleksey, B.: Integrating internet of things with the digital object architecture. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 540–547. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_47

    Chapter  Google Scholar 

  10. Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Grebenikova, N.M., Davydov, R.V.: New method for determining the probability of signals overlapping for the estimation of the stability of the radio monitoring systems in a complex signal environment. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 525–533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_45

    Chapter  Google Scholar 

  11. Pirmagomedov, R., Kirichek, R., Blinnikov, M., Koucheryavy, A.: UAV-based gateways for wireless nanosensor networks deployed over large areas. Comput. Commun. 146, 55–62 (2019)

    Article  Google Scholar 

  12. Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Slobodyan, M.G.: Features of the development of transceivers for information and communication systems considering the distribution of radar operating frequencies in the frequency range. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART-2018. LNCS, vol. 11118, pp. 509–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_45

    Chapter  Google Scholar 

  13. Al-Bahri, M., Yankovsky, A., Kirichek, R., Borodin, A.: Smart system based on DOA IoT for products monitoring anti-counterfeiting. In: 4th MEC International Conference on Big Data and Smart City (ICBDSC-2019). Muscat (Oman), pp. 8645610 (2019)

    Google Scholar 

  14. Dinh, T.D., Le, D.T., Tran, T.T.T., Kirichek, R.: Flying Ad-Hoc network for emergency based on IEEE 802.11p multichannel MAC protocol. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 479–494. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36614-8_37

    Chapter  Google Scholar 

  15. Zakharov, M., Kirichek, R., Makolkina, M., Koucheryavy, A.: Signal transmitting in pheromone networks. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART-2019. LNCS, vol. 11660, pp. 534–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_46

    Chapter  Google Scholar 

  16. Helton, J., Chen, C.I.H., Lin, D.M., Tsui, J.B.Y.: FPGA-based 1.2 GHz bandwidth digital instantaneous frequency measurement receiver. In: 9th International Symposium on Quality Electronic Design (2008)

    Google Scholar 

  17. Darvin, Ch.R., Paranjape, H., Sarath, K.M., Elango, V.: Analysis of autocorrelation based frequency measurement algorithm for IFM receivers. In: 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (2014)

    Google Scholar 

  18. Mahlooji, S., Mohammadi, K.: Very high resolution digital instantaneous frequency measurement receiver. In: 2009 International Conference on Signal Processing Systems (2009)

    Google Scholar 

  19. Lee, Y.H.G., Helton, J., Chen, C.I.H.: Real-time FPGA-based implementation of digital instantaneous frequency measurement receiver. In: 2008 IEEE International Symposium on Circuits and Systems (2008)

    Google Scholar 

  20. Liang, Z., Dong, X., Yang, X., Song, H.: Digital weighted autocorrelation receiver using channel characteristic sequences for transmitted reference UWB communication systems. In: 2016 IEEE Wireless Communications and Networking Conference (2016)

    Google Scholar 

  21. Pausini, M., Janssen, G.J.M.: Analysis and comparison of autocorrelation receivers for IR-UWB signals based on differential detection. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2004)

    Google Scholar 

  22. Leus, G., Van Der Veen, A.-J.: A weighted autocorrelation receiver for transmitted reference ultra-wideband communications. In: IEEE 6th Workshop on Signal Processing Advances in Wireless Communications (2005)

    Google Scholar 

  23. Mohammed, M.S., Singh, M.J., Abdullah, M.: New TR-UWB Receiver Algorithm Design to Mitigate MUI in Concurrent Schemes. Wireless Pers. Commun. 97(3), 4431–4450 (2017). https://doi.org/10.1007/s11277-017-4732-z

    Article  Google Scholar 

  24. Liang, Z., Zhang, G., Dong, X., Huo, Y.: Design and analysis of passband transmitted reference pulse cluster UWB Systems In The Presence Of Phase Noise. IEEE Access 6, 14954–14965 (2018)

    Article  Google Scholar 

  25. Liu, J., Luo, Z., Xiong, X.: Low-resolution ADCs for wireless communication: a comprehensive survey. IEEE Access 7, 91291–91324 (2019)

    Article  Google Scholar 

  26. Rogozhnikov, E.V., Savenko, K.V., Movchan, A.K., Dmitriyev, E.M.: The study of correlation receivers. In: 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) (2019)

    Google Scholar 

  27. Levanon, N., Mozeson, E.: Radar Signals, New Work, IEEE Press, John Wiley & Sons (2004)

    Google Scholar 

  28. Skolnik, M.I.: Introduction to Radar Systems, 3rd edn. McGraw-Hill, New York (2001)

    Google Scholar 

  29. Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. Roy. Soc. London 231, 289–337 (1933)

    MATH  Google Scholar 

  30. Conte, E., De Maio, A., Galdi, C.: Signal detection in compound-Gaussian noise: Neyman-Pearson and CFAR detectors. IEEE Trans. Signal Process. 48(2), 419–428 (2000)

    Article  Google Scholar 

  31. Maria-Pilar, J.A., de David la, M.M., Roberto, G.P., Manuel, R.Z.: Radar detection with the Neyman–Pearson criterion using supervised-learning-machines trained with the cross-entropy error. EURASIP J. Adv. Signal Process. 2013, 44 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Podstrigaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nhan, N.T. et al. (2020). Study of Detection Characteristics in Recognition of Simple Radio Pulses and Signals with LFM and PSK in the Autocorrelation Receiver. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12525. Springer, Cham. https://doi.org/10.1007/978-3-030-65726-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65726-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65725-3

  • Online ISBN: 978-3-030-65726-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics