Skip to main content

Probability Distributions of Instantaneous Amplitude Values of Random Optimal FTN Signal Sequences with Controlled ISI

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

An approaching to the transmission channel capacity with a limited frequency band ΔF is achieved by using signals with length Ts exceeding the duration of the symbol’s transmission interval T. Such signals are transmitted under conditions of significant intersymbol interference. This leads to the fact that a random sequence of transmitted signals will have significant values of the peak to average power ratio (PAPR). To estimate the value of PAPR, it is necessary to determine the statistical characteristics of the random process emission. This will help to form the conditions for the permissible amplitude limitation of the output signal. In the work we find probability distributions of instantaneous amplitude values of the random optimal signal sequences with different durations (Ts = 8T…16T). The conditions for approximating the distribution histograms to the Gaussian process are found. As a information source, a Gaussian source with quantization of levels of sampled values was selected. It is shown that with the number of quantization levels exceeding 32, the histograms approach a truncated Gaussian distribution. Simulation results are given for the transmission speed of the channel alphabet symbols from R = 1/T to R = 10/T, which corresponds to the faster-than-Nyquist transmission rate. Recommendations are given on the required dynamic range of operation for power amplifiers in transmitting devices in accordance with the obtained value of FTN signal sequences PAPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazo, J.E.: Faster-than-nyquist signaling. Bell Syst. Techn. J. 54(8), 1451–1462 (1975). https://doi.org/10.1002/j.1538-7305.1975.tb02043.x

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, J.B., Rusek, F., Öwall, V.: Faster-than-nyquist signaling. Proc. IEEE 101(8), 1817–1830 (2013). https://doi.org/10.1109/JPROC.2012.2233451

    Article  Google Scholar 

  3. Rusek, F., Anderson, J.B.: Constrained capacities for faster-than-nyquist signaling. IEEE Trans. Inf. Theor. 55(2), 764–775 (2009). https://doi.org/10.1109/TIT.2008.2009832

    Article  MathSciNet  MATH  Google Scholar 

  4. Lavrenyuk, I.I., Ovsyannikova, A.S., Zavjalov, S.V., Volvenko, S.V., Makarov, S.B.: Improving energy efficiency of finite time FTN pulses detection by choosing optimal envelope shape. In: 2019 26th International Conference on Telecommunications (ICT), Hanoi, Vietnam, 2019, pp. 289–294 (2019). https://doi.org/10.1109/ict.2019.8798830

  5. Kazimierczuk, M.K.: RF Power Amplifiers. Wiley, Chichester, UK (2014)

    Book  Google Scholar 

  6. Grebennikov, A., Sokal, N.O.: Switchmode RF Power Amplifiers. Newnes, New York (2007)

    Google Scholar 

  7. Pergushev, A., Sorotsky, V., Ulanov, A.: Criteria for selection envelope tracking power supply parameters for high peak-to-average power ratio applications. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 2019, pp. 13–16 (2019). https://doi.org/10.1109/eexpolytech.2019.8906793

  8. Pergushev, A., Sorotsky, V., Ulanov, A.: Output voltage PWM conversion inaccuracies in envelope tracking power supply for high peak-to-average power ratio applications. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 2019, pp. 9–12 (2019). https://doi.org/10.1109/eexpolytech.2019.8906854

  9. Zudov, R.I.: Efficiency of a class DE power amplifier for RF signals with high peak-to-average power ratio. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 2019, pp. 28–30 (2019). https://doi.org/10.1109/eexpolytech.2019.8906856

  10. Pergushev, A., Sorotsky, V.: Signal distortion decreasing in envelope tracking power amplifiers. In: 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, 2018, pp. 44–47 (2018). https://doi.org/10.1109/eexpolytech.2018.8564443

  11. Thompson, S.C., Proakis, J.G., Zeidler, J.R.: The effectiveness of signal clipping for PAPR and total degradation reduction in OFDM systems. In: IEEE Global Telecommunications Conference, GLOBECOM 2005, St. Louis, MO, 2005, pp. 5 pp.-2811 (2005). https://doi.org/10.1109/glocom.2005.1578271

  12. Nguyen, D.C., Zavjalov, S.V., Ovsyannikova, A.S.: The effectiveness of application of multi-frequency signals under conditions of amplitude limitation. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 681–687. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_59

    Chapter  Google Scholar 

  13. Rashich, A., Fadeev, D.: Optimal input power backoff of a nonlinear power amplifier for FFT-based trellis receiver for SEFDM signals. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 641–647. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_55

    Chapter  Google Scholar 

  14. Makarov, S.B., Ovsyannikova, A.S., Lavrenyuk, I.I., Zavjalov, S.V., Volvenko, S.V.: Distributions of probability of power values for random sequences of optimal FTN signals. In: 2018 International Symposium on Consumer Technologies (ISCT), St. Petersburg, 2018, pp. 57–59 (2018). https://doi.org/10.1109/ISCE.2018.8408919

  15. Makarov, S., Zavjalov, S., Ovsyannikova, A., Lavrenyuk, I., Xue, W.: Comparison of the spectral and energy efficiency of FTN signals based on RRC pulses and obtained by the optimization method. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 2019, pp. 177–180 (2019). https://doi.org/10.1109/eexpolytech.2019.8906866

Download references

Acknowledgment

This research work was supported by Peter the Great St. Petersburg Polytechnic University in the framework of the Program “5-100-2020” and used computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (http://www.scc.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Lavrenyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lavrenyuk, I., Makarov, S.B., Hu, B., Dong, G., Kudryashova, T. (2020). Probability Distributions of Instantaneous Amplitude Values of Random Optimal FTN Signal Sequences with Controlled ISI. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12526. Springer, Cham. https://doi.org/10.1007/978-3-030-65729-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65729-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65728-4

  • Online ISBN: 978-3-030-65729-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics