Skip to main content

Fiber-Optical Communication Line with a System for Compensation of Radiation-Induced Losses During the Transmission of Information

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

This research is focused on γ-radiation, the main negative factor which causes significant losses in fiber-optical communication lines. We determine the methods for increasing the relaxation rate of color centers that are formed in an optical fiber under the influence of γ - radiation. Moreover, we develop the design of the fiber-optic communication line with the compensation of radiation-induced losses at the moment of exposure to the optical fiber γ - radiation. The results of experimental investigations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomashuk, A.L., Filippov, A.V., Kashaykin, P.F., Guryanov, A.N., Semjonov, S.L.: 1.55-μm-light absorption induced by pulsed-X-ray radiation in pure-silica-core fiber: effects of light power and temperature. J. Non-Crystalline Solids 521, 119504 (2019)

    Google Scholar 

  2. Tomashuk, A.L., Filippov, A.V., Kashaykin, P.F., Byshkova, E.A., Guryanov, A.N., Dianov, E.M.: Role of inherent radiation-induced self-trapped holes in pulsed-radiation effect on pure-silica-core optical fibers. J. Lightwave Technol. 37(3), 956–962 (2019)

    Article  Google Scholar 

  3. Nepomnyashchaya, E., Velichko, E., Kotov, O.: Determination of noise components in laser correlation spectroscopic devices for signal-to-noise ratio estimation. In: Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2019, 8906887, pp. 321–324 (2019)

    Google Scholar 

  4. Velichko, E., Savchenko, E., Nepomnyashchaya, E., Dyubo, D., Tsybin, O.: Nanocommunication system with a laser activated molecular film. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 649–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_59

    Chapter  Google Scholar 

  5. Petrov, A.A., Davydov, V.V.: Improvement frequency stability of caesium atomic clock for satellite communication system. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 739–744. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_68

    Chapter  Google Scholar 

  6. Davydov, V.V., Dudkin, V.I., Velichko, E.N., Karseev, AYu.: Fiber-optic system for simulating accidents in the cooling circuits of a nuclear power plant. J Opt. Technol. (A Translation of Opticheskii Zhurnal) 82(3), 132–135 (2015)

    Google Scholar 

  7. Davydov, V.V., Dudkin, V.I., Karseev, AYu.: Fiber – optic imitator of accident situation for verification of work of control systems of atomic energy plants on ships. Opt. Mem. Neural Networks (Information Optics) 23(3), 170–176 (2014)

    Article  Google Scholar 

  8. Ateya, Abdelhamied A., Muthanna, A., Vybornova, A., Darya, P., Koucheryavy, A.: Energy - aware offloading algorithm for multi-level cloud based 5G system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_33

    Chapter  Google Scholar 

  9. Makolkina, M., Pham, V.D., Kirichek, R., Gogol, A., Koucheryavy, A.: Interaction of AR and IoT applications on the basis of hierarchical cloud services. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 547–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_49

    Chapter  Google Scholar 

  10. Kiesewetter, D., Malyugin, V., Makarov, S., Korotkov, K., Ming, D., Wei, X.: Application of the optical fibers in the system of determining the distance of jump at ski springboard. In: Proceedings – 2016 Advances in Wireless and Optical Communications, RTUWO 2016, 7821845, pp. 5–8 (2017)

    Google Scholar 

  11. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  12. Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Application of microwave photonics components for ultrawideband antenna array beamforming. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 670–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_58

    Chapter  Google Scholar 

  13. Davydov, V.V., Karseev, A.Yu., Nepomnyashchay, E.K., Petrov, A.A., Velichko, E.N.: Fiber – Optic Super – High – Frequency Signal Transmission System for Sea – Based Radar Station. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8638, pp. 694-702 (2014)

    Google Scholar 

  14. Ateya, A.A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., Koucheryavy, A.: Development of intelligent core network for tactile internet and future smart systems. J. Sens. Actuator Netw. 7(1), 7 (2018)

    Article  Google Scholar 

  15. Tarasenko, M.Y., Davydov, V.V., Lenets, V.A., Akulich, N.V., Yalunina, T.R.: Features of use direct and external modulation in fiber optical simulators of a false target for testing radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 227–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_21

    Chapter  Google Scholar 

  16. Ermolaev, A.N., Krishpents, G.P., Vysoczkiy, M.G.: Compensation of chromatic and polarization mode dispersion in fiber-optic communication lines in microwave signals transmittion. J. Phys: Conf. Ser. 741(1), 012071 (2016)

    Google Scholar 

  17. Davydov, V.V., Ermak, S.V., Karseev, A.U., Nepomnyashchaya, E.K., Petrov, A.A., Velichko, E.N.: Fiber-optic super-high-frequency signal transmission system for sea-based radar station. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 694–702. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10353-2_65

    Chapter  Google Scholar 

  18. Friman, R.K.: Fiber-optic Communication Systems. Wiley, New Jersey, 496 p. (2012)

    Google Scholar 

  19. Kashaykin, P.F., Tomashuk, A.L., Salgansky, M.Y., Guryanov, A.N., Dianov, E.M.: Anomalies and peculiarities of radiation-induced light absorption in pure silica optical fibers at different temperatures. J. Appl. Phys. 121(21), 213104 (2017)

    Article  Google Scholar 

  20. Kashaikin, P.F., et al.: Prediction of radiation-induced light absorption in optical fibers with an undoped silica core for space applications. Tech. Phys. 64(5), 701–707 (2019). https://doi.org/10.1134/S1063784219050098

    Article  Google Scholar 

  21. Pirmagomedov, R., Kirichek, R., Blinnikov, M., Koucheryavy, A.: UAV-based gateways for wireless nanosensor networks deployed over large areas. Comput. Commun. 146, 55–62 (2019)

    Article  Google Scholar 

  22. Simonov, A., Fokin, G., Sevidov, V., Sivers, M., Dvornikov, S.: Polarization direction finding method of interfering radio emission sources. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 208–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_18

    Chapter  Google Scholar 

  23. Moroz, A.V., Davydov, R.V., Davydov, V.V.: A new scheme for transmitting heterodyne signals based on a fiber-optical transmission system for receiving antenna devices of radar stations and communication systems. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 710–718. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_62

    Chapter  Google Scholar 

  24. Al-Bahri, M., Ruslan, K., Aleksey, B.: Integrating internet of things with the digital object architecture. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 540–547. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_47

    Chapter  Google Scholar 

  25. Davydov, V.V., et al.: Fiber-optics system for the radar station work control. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 712–721. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_65

    Chapter  Google Scholar 

  26. Davydov, Roman V., et al.: Fiber-optic transmission system for the testing of active phased antenna arrays in an anechoic chamber. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 177–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_16

    Chapter  Google Scholar 

  27. Davydov, V.V., Dudkin, V.I., Karseev, A.Y.: Fiber – Optic communication line for the NMR signals transmission in the control systems of the ships atomic power plants work. Opt. Mem. Neural Netw. (Information Optics) 23(4), 259–264 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman V. Davydov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitrieva, D.S., Pilipova, V.M., Davydov, R.V., Andreeva, E.I., Davydov, V.V., Rud’, V.Y. (2020). Fiber-Optical Communication Line with a System for Compensation of Radiation-Induced Losses During the Transmission of Information. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12526. Springer, Cham. https://doi.org/10.1007/978-3-030-65729-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65729-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65728-4

  • Online ISBN: 978-3-030-65729-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics