Skip to main content

Self-assembled Biomolecular Films as a New Material for Nano-Telecommunication Devices

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

The advances made in telecommunication technologies imply that new functional materials are developed for the components used in advanced electronics. Creating biomolecular films with certain impedance characteristics for telecommunication devices is an urgent task. This paper presents the results of experiments on preparing thin films by dehydration of water-salt solutions of albumin protein on a dielectric substrate. Periodic cellular structures forming in the films during the phase transition were studied. The values of the parameters and the results of the experiments were refined by computer simulation. We reached a conclusion about the significant value of the electric micro-potential, electrical conductivity and the flow of local currents in such processes. Depending on the conditions of formation, various spatial, frequency and energy characteristics of the transmission of electrical signals through self-assembled biomolecular films can be achieved, making it possible to use these films to create devices and elements of advanced electronics and telecommunications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Velichko, E., Tsybin, O.: Biomolecular electronics. Polytechnic University (2012)

    Google Scholar 

  2. Liu, T.Y., et al.: CMOS-based biomolecular diagnosis platform. In: 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2017, pp. 96–100 (2017). https://doi.org/10.1109/NEMS.2017.8016982

  3. Akan, O.B., Ramezani, H., Khan, T., Abbasi, N.A., Kuscu, M.: Fundamentals of molecular information and communication science. Proc. IEEE 105, 306–318 (2017). https://doi.org/10.1109/JPROC.2016.2537306

    Article  Google Scholar 

  4. Bush, S.F.: Nanoscale communication networks (2010)

    Google Scholar 

  5. Walsh, F., Balasubramaniam, S., Botvich, D., Donnelly, W.: Synthetic protocols for nano sensor transmitting platforms using enzyme and DNA based computing. Nano Commun. Netw. 1, 50–62 (2010). https://doi.org/10.1016/j.nancom.2010.04.002

    Article  Google Scholar 

  6. Kuscu, M., Akan, O.B.: On the physical design of molecular communication receiver based on nanoscale biosensors. IEEE Sens. J. 16, 2228–2243 (2016). https://doi.org/10.1109/JSEN.2016.2519150

    Article  Google Scholar 

  7. Offenhäusser, A., Rinaldi, R.: Nanobioelectronics - for Electronics, Biology, and Medicine. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-09459-5

    Book  Google Scholar 

  8. Baranov, M.A., Klimchitskaya, G.L., Mostepanenko, V.M., Velichko, E.N.: Fluctuation-induced free energy of thin peptide films. Phys. Rev. E 99, 022410 (2019). https://doi.org/10.1103/PhysRevE.99.022410

    Article  Google Scholar 

  9. Gu, K., Onorato, J.W., Luscombe, C.K., Loo, Y.L.: The role of tie chains on the mechano-electrical properties of semiconducting polymer films. Adv. Electron. Mater. 6, 1901070 (2020). https://doi.org/10.1002/aelm.201901070

    Article  Google Scholar 

  10. Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M., Smith, L.M.: DNA computing on surfaces. Nature 403, 175–179 (2000). https://doi.org/10.1038/35003155

    Article  Google Scholar 

  11. Kahan, M., Gil, B., Adar, R., Shapiro, E.: Towards molecular computers that operate in a biological environment. Phys. D Nonlinear Phenom. 237, 1165–1172 (2008). https://doi.org/10.1016/j.physd.2008.01.027

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolganov, P.V., Cluzeau, P., Dolganov, V.K.: Interaction and self-organization of inclusions in two-dimensional free-standing smectic films. Liq. Cryst. Rev. 7, 1–29 (2019). https://doi.org/10.1080/21680396.2019.1586590

    Article  Google Scholar 

  13. Velichko, E., Zezina, T., Baranov, M., Nepomnyashchaya, E., Tsybin, O.: Dynamics of polypeptide cluster dipole moment for nano communication applications. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 675–682. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_62

    Chapter  Google Scholar 

  14. Privalov, V.E., Rybalko, A.V., Charty, P.V., Shemanin, V.G.: Effect of noise and vibration on the performance of a particle concentration laser meter and optimization of its parameters. Tech. Phys. 52, 352–355 (2007). https://doi.org/10.1134/S1063784207030115

    Article  Google Scholar 

  15. Baranov, M.A., Rozov, S.V.: Study of the dielectric parameters of biological liquids. In: Journal of Physics: Conference Series (2019). https://doi.org/10.1088/1742-6596/1326/1/012006

  16. Baranov, M.: Study of dielectric parameters of protein solution, vol. 75 (2019). https://doi.org/10.1117/12.2523338

  17. Cuevas, J.C., Scheer, E.: Molecular Electronics: An Introduction to Theory and Experiment (2010)

    Google Scholar 

  18. Lyshevski, S.E.: Nano and Molecular Electronics Handbook (2018). https://doi.org/10.1201/9781315221670

  19. Velichko, E.N., Baranov, M.A., Mostepanenko, V.M.: Change of sign in the Casimir interaction of peptide films deposited on a dielectric substrate. Mod. Phys. Lett. A 35, 2040020 (2020). https://doi.org/10.1142/S0217732320400209

    Article  Google Scholar 

  20. Golbraikh, E., Rapis, E.G., Moiseev, S.S.: On the crack pattern formation in a freely drying protein film. Tech. Phys. 48, 1333–1337 (2003). https://doi.org/10.1134/1.1620131

    Article  Google Scholar 

Download references

Acknowledgments

The study is supported by Peter the Great St. Petersburg Polytechnic University in the framework of the Program “5-100-2020”. We express our gratitude to Tatyana Igorevna Zezina for useful advice in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baranov, M., Velichko, E., Tsybin, O. (2020). Self-assembled Biomolecular Films as a New Material for Nano-Telecommunication Devices. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12526. Springer, Cham. https://doi.org/10.1007/978-3-030-65729-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65729-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65728-4

  • Online ISBN: 978-3-030-65729-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics