Skip to main content

Lightweight Temporal Self-attention for Classifying Satellite Images Time Series

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12588))

Abstract

The increasing accessibility and precision of Earth observation satellite data offers considerable opportunities for industrial and state actors alike. This calls however for efficient methods able to process time-series on a global scale. Building on recent work employing multi-headed self-attention mechanisms to classify remote sensing time sequences, we propose a modification of the Temporal Attention Encoder of Garnot et al. [5]. In our network, the channels of the temporal inputs are distributed among several compact attention heads operating in parallel. Each head extracts highly-specialized temporal features which are in turn concatenated into a single representation. Our approach outperforms other state-of-the-art time series classification algorithms on an open-access satellite image dataset, while using significantly fewer parameters and with a reduced computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    E and H are typically powers of 2 and \(E>H\), ensuring that \(E'\) remains integer.

References

  1. Bailly, A., Malinowski, S., Tavenard, R., Chapel, L., Guyet, T.: Dense bag-of-temporal-SIFT-words for time series classification. In: Douzal-Chouakria, A., Vilar, J.A., Marteau, P.-F. (eds.) AALTD 2015. LNCS (LNAI), vol. 9785, pp. 17–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44412-3_2

    Chapter  Google Scholar 

  2. Bailly, S., Giordano, S., Landrieu, L., Chehata, N.: Crop-rotation structured classification using multi-source Sentinel images and LPIS for crop type mapping. In: IGARSS (2018)

    Google Scholar 

  3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR (2014)

    Google Scholar 

  4. Garnot, V.S.F., Landrieu, L., Giordano, S., Chehata, N.: Time-space tradeoff in deep learning models for crop classification on satellite multi-spectral image time series. In: IGARSS (2019)

    Google Scholar 

  5. Garnot, V.S.F., Landrieu, L., Giordano, S., Chehata, N.: Satellite image time series classification with pixel-set encoders and temporal self-attention. In: CVPR (2020)

    Google Scholar 

  6. Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y.: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images. Remote Sens. 10, 75 (2018)

    Article  Google Scholar 

  7. Kussul, N., Lemoine, G., Gallego, F.J., Skakun, S.V., Lavreniuk, M., Shelestov, A.Y.: Parcel-based crop classification in Ukraine using Landsat-8 data and Sentinel-1A data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 2500–2508 (2016)

    Article  Google Scholar 

  8. Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G.: Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 187, 156–168 (2016)

    Article  Google Scholar 

  9. Pelletier, C., Webb, G.I., Petitjean, F.: Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 11, 523 (2019)

    Article  Google Scholar 

  10. Rußwurm, M., Körner, M.: Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery. In: NeurIPS Workshop (2018)

    Google Scholar 

  11. Rußwurm, M., Körner, M.: Self-attention for raw optical satellite time series classification. arXiv preprint arXiv:1910.10536 (2019)

  12. Tavenard, R., Malinowski, S., Chapel, L., Bailly, A., Sanchez, H., Bustos, B.: Efficient temporal kernels between feature sets for time series classification. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 528–543. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_32

    Chapter  Google Scholar 

  13. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  14. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  15. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. INeurIPS (2015)

    Google Scholar 

  16. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: ACM SIGKDD (2009)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the AI4GEO project: http://www.ai4geo.eu/ and the French Agriculture Paying Agency (ASP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien Sainte Fare Garnot .

Editor information

Editors and Affiliations

Appendix

Appendix

In Table 4, we give the exact configurations used to obtain the values in Fig. 3.

Table 4. Configurations of the L-TAE, TAE, GRU, and TempCNN instances used to obtain Fig. 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garnot, V.S.F., Landrieu, L. (2020). Lightweight Temporal Self-attention for Classifying Satellite Images Time Series. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2020. Lecture Notes in Computer Science(), vol 12588. Springer, Cham. https://doi.org/10.1007/978-3-030-65742-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65742-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65741-3

  • Online ISBN: 978-3-030-65742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics