Abstract
Since the traditional relational database systems are not capable of following the contemporary requirements on Big Data processing, a family of NoSQL databases emerged. It is not an exception for such systems not to require an explicit schema for the data they store. Nevertheless, application developers must maintain at least the so-called implicit schema. In certain situations, however, the presence of an explicit schema is still necessary, and so it makes sense to propose methods capable of schema inference just from the structure of the available data. In the context of document NoSQL databases, namely those assuming the JSON data format, we focus on several representatives of the existing inference approaches and provide their thorough comparison. Although they are often based on similar principles, their features, support for the detection of references, union types, or required and optional properties differ greatly. We believe that without adequately tackling their disadvantages we identified, uniform schema inference and modeling of the multi-model data simply cannot be pursued straightforwardly.
This work was supported by Czech Science Foundation project 20-22276S and Charles University SVV project 260451.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: A type system for interactive JSON schema inference. In: ICALP 2019. LIPIcs, vol. 132, pp. 101:1–101:13 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.101
Baazizi, M.-A., Colazzo, D., Ghelli, G., Sartiani, C.: Parametric schema inference for massive JSON datasets. VLDB J. 28(4), 497–521 (2019). https://doi.org/10.1007/s00778-018-0532-7
Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular expressions and DTDs. ACM Trans. Database Syst. 35(2), 1–47 (2010). https://doi.org/10.1145/1735886.1735890
Bouhamoum, R., Kellou-Menouer, K., Lopes, S., Kedad, Z.: Scaling up schema discovery for RDF datasets. In: ICDEW 2018, pp. 84–89. IEEE (2018). https://doi.org/10.1109/ICDEW.2018.00021
BSON: Binary JSON (2012). http://bsonspec.org/spec.html
Cánovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON data. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39200-9_8
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492
DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas from nested key-value data. In: SIGMOD 2016, pp. 295–310. ACM (2016). https://doi.org/10.1145/2882903.2882924
Feliciano Morales, S.: Inferring NoSQL data schemas with model-driven engineering techniques. Ph.D. thesis, Universidad de Murcia (2017)
Frozza, A.A., dos Santos Mello, R., da Costa, F.d.S.: An approach for schema extraction of JSON and extended JSON document collections. In: IRI 2018, pp. 356–363 (2018). https://doi.org/10.1109/IRI.2018.00060
Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., Romero, O.: Interactive multidimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86–104 (2018). https://doi.org/10.1016/j.is.2018.06.004
Holubová, I., Svoboda, M., Lu, J.: Unified management of multi-model data. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 439–447. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_36
JavaScript Object Notation (JSON) (2013). http://www.json.org/
JSON Schema (2019). https://json-schema.org/
Klettke, M., Störl, U., Scherzinger, S.: Schema extraction and structural outlier detection for JSON-based NoSQL data stores. In: Datenbanksysteme für Business, Technologie und Web (BTW 2015), pp. 425–444 (2015)
Mlýnková, I., Nečaský, M.: Heuristic methods for inference of XML schemas: lessons learned and open issues. Informatica 24(4), 577–602 (2013)
Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON schema. In: Proceedings of the 25th International Conference on World Wide Web, pp. 263–273 (2016). https://doi.org/10.1145/2872427.2883029
Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Pearson Higher Education (2004)
Sevilla Ruiz, D., Morales, S.F., García Molina, J.: Inferring versioned schemas from NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_35
Wang, L.: Schema management for document stores. Proc. VLDB Endow. 8(9), 922–933 (2015). https://doi.org/10.14778/2777598.2777601
Extensible Markup Language (XML) 1.0 (Fifth Edition) (2013). https://www.w3.org/TR/REC-xml/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Čontoš, P., Svoboda, M. (2020). JSON Schema Inference Approaches. In: Grossmann, G., Ram, S. (eds) Advances in Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12584. Springer, Cham. https://doi.org/10.1007/978-3-030-65847-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-65847-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65846-5
Online ISBN: 978-3-030-65847-2
eBook Packages: Computer ScienceComputer Science (R0)