
The AIQ Meta-Testbed: Pragmatically Bridging Academic AI
Testing and Industrial Q Needs

Markus Borg
RISE Research Institutes of Sweden AB

Dept. of Computer Science, Lund University
Lund, Sweden

markus.borg@ri.se

ABSTRACT

AI solutions seem to appear in any and all application domains. As

AI becomes more pervasive, the importance of quality assurance

increases. Unfortunately, there is no consensus on what artificial

intelligence means and interpretations range from simple statisti-

cal analysis to sentient humanoid robots. On top of that, quality

is a notoriously hard concept to pinpoint. What does this mean

for AI quality? In this paper, we share our working definition and

a pragmatic approach to address the corresponding quality assur-

ance with a focus on testing. Finally, we present our ongoing work

on establishing the AIQ Meta-Testbed.

KEYWORDS

artificial intelligence, machine learning, quality assurance, so�ware

testing, testbed

ACM Reference format:

Markus Borg. 2016. �e AIQ Meta-Testbed: Pragmatically Bridging Aca-

demic AI Testing and Industrial Q Needs. In Proceedings of ACMConference,

Washington, DC, USA, July 2017 (Conference’17), 7 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

�e number of AI applications is constantly growing. Across di-

verse domains, enterprises want to harness AI technology to ex-

plore the lucrative promises expressed by AI advocates. As AI be-

comes pervasive, there is inevitably a need to build trust in this

type of so�ware. Furthermore, critical AI is on the rise, i.e., ap-

plications will not be restricted to entertainment and games. AI is

already fundamental inmany business-critical applications such as

ad optimization and recommendation systems. As the technology

further evolves, many believe that safety-critical AI will soon be-

come commonplace in the automotive [22] andmedical domains [18].

Other examples of critical AI, with other types of quality require-

ments, will be found in the finance industry and the public sector.

Unfortunately, how to best approach �ality Assurance (QA) for

AI applications remains an open question.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permi�ed. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

A fundamental issue originates already in the terminology, i.e.,

the concept of “AI quality”. First, there are several different defini-

tions of AI, and their interpretations range from simple statistical

analysis to the sentient humanoid robotics of the science fiction

literature. Furthermore, AI appears to be a moving target, as what

was considered AI when the term was coined in the 1950s would

hardly qualify as AI today. Second, in the same vein, quality is

a notoriously difficult aspect to pinpoint [34]. �ality is a multi-

dimensional patchwork of different product aspects that influences

the user’s experience. Moreover, quality is highly subjective and

largely lies in the eye of the beholder. Taken together, AI quality

is a truly challenging concept to approach, i.e., a subjective mish-

mash of user experience regarding a type of technology with un-

clear boundaries that also change over time. �ere is a need for

pragmatic interpretations to help advance research and practice

related to AI quality – we provide ours in Section 3.

Contemporary AI solutions are dominated by Machine Learn-

ing (ML) and in particular supervised learning. A pragmatic first

step would be to initially focus QA accordingly. As development

of systems that rely on supervised learning introduces new chal-

lenges, QA must inevitably adapt. No longer is all logic expressed

by programmers in source code instructions, instead ML models

are trained on large sets of annotated data. Andrej Karpathy, AI

Director at Tesla, refers to this paradigm of solution development

as “So�ware 2.0” and claims that formany applications that require

a mapping from input to output, it is easier to collect and annotate

appropriate data than to explicitly write the mapping function.1

As we embark on the AI quality journey, we argue that methods

for QA of “So�ware 2.0” should evolve first – we refer to this as

MLware.

�e rest of this paper is organized as follows. Section 2 mo-

tivates the importance of MLware QA, elaborates on the intrinsic

challenges, and presents closely related work. Section 3 introduces

the working definitions used in our work on establishing the AIQ

Meta-Testbed, which is further described in Section 4. Finally, Sec-

tion 5 concludes our position paper.

2 BACKGROUND AND RELATED WORK

Fueled by Internet-scale data and enabled by massive compute, ML

using Deep Neural Networks (DNN), i.e., neural networks with

several layers, has revolutionized several application areas. Suc-

cess stories include computer vision, speech recognition, and ma-

chine translation. We will focus the discussion on DNNs, but many

of the involved QA issues apply also to other families of ML, e.g.,

1bit.ly/3dKeUEH



Conference’17, July 2017, Washington, DC, USA M. Borg

support vector machines, logistic regression, and random forests –

so�ware that is not only coded, but also trained.

From aQAperspective, developing systems based onDNNs con-

stitutes a paradigm shi� compared to conventional systems [7]. No

longer do human engineers explicitly express all logic in source

code, instead DNNs are trained using enormous amounts of histor-

ical data. A state-of-the-art DNN might be composed of hundreds

of millions of parameter weights that is neither applicable for code

review nor code coverage testing [27] – best practices in indus-

try and also mandated by contemporary safety standards. As long

as ML applications are restricted to non-critical entertainment ap-

plications (e.g., video games and smartphone camera effects) this

might not be an issue. However, when ML applications are inte-

grated into critical systems, they must be trustworthy.

�e automotive domain is currently spearheading work on de-

pendable ML, reflected by work on the emerging safety standard

ISO/PAS 21448. DNNs are key enablers for vehicle environmental

perception, which is a prerequisite for autonomous features such

as lane departure detection, path planning, and vehicle tracking.

While DNNs have been reported to outperform human classifica-

tion accuracy for specific tasks, they will occasionally misclassify

new input. Recent work shows that DNNs trained for perception

can drastically change their output if only a few pixels change [4].

�e last decade resulted in many beaten ML benchmarks, but as il-

lustrated by this example, there is a pressing need to close the gap

between ML application development and its corresponding QA.

�ere are established approaches to QA for conventional so�-

ware, i.e., so�ware expressed in source code. Best practices have

been captured in numerous textbooks over the years, e.g., by Schul-

meyer [29], Galin [12], Mistrik et al. [24], andWalkinshaw [34]. De-

velopers write source code that can be inspected by others as part

of QA. As a complement, static code analysis tools can be used to

support source code quality. Unfortunately, the logic encapsulated

in a trained ML model cannot be targeted by QA approaches that

work on the source code level. ML models in general, and DNN

models in particular, are treated as black boxes. While there is

growing interest in research on explainable AI [1], interpreting the

inner workings of ML is still an open problem. �is is a substantial

issue when explainability is fundamental, e.g., when safety certifi-

cation is required [6] or when demonstrating legal compliance [33]

(such as GDPR or absence of illegal discrimination in the trained

model).

On the other hand, source code inspection and analysis are also

not sufficient tools to perform QA of conventional so�ware sys-

tems. During development, so�ware solutions rapidly grow into

highly complex systems whose QA rarely can be restricted to anal-

ysis – although substantial research effort has been dedicated to

formal methods [35] including formal verification in model-driven

engineering [14]. In practice, so�ware QA revolves around well-

defined processes [3, 15] and a backbone of so�ware testing. So�-

ware testing, i.e., learning about the system by executing it, is the

quintessential approach to so�ware QA [13, 20, 25].

In the so�ware engineering community, there is momentum on

evolving practices to replace ad-hoc development of AI-enabled

systems by systematic engineering approaches. A textbookbyHul-

ten on “Building Intelligent Systems” [16] is recommended reading

in related courses by Kästner at Carnegie Mellon University [21]

and Jamshidi at University of South Carolina. Kästner also pro-

vides an annotated bibliography of related academic research2 , as

does the SE4ML group at Leiden Institute of Advanced Computer

Science3 , recently summarized in an academic paper [31]. Bosch et

al. recently presented a research agenda for engineering of AI sys-

tems [8], sharing what they consider the most important activities

to reach production-quality AI systems.

In recent years, numerous papers proposed novel testing tech-

niques tailored for ML. Zhang et al. conducted a comprehensive

survey of 144 papers on ML testing [36], defined as “any activities

designed to reveal ML bugs” where anML bug is “any imperfection

in a machine learning item that causes a discordance between the

existing and the required conditions.” Riccio et al. conducted an-

other secondary study, analyzing 70 primary studies on functional

testing of ML-based systems [32]. �e authors do not use the term

“bug” for misclassifications, as any ML component will sometimes

fail to generalize. We agree with this view, and avoid terms such

as ML bugs, model bugs and the like when referring to functional

inefficiencies of MLware.

3 AI QUALITY ASSURANCE – WORKING
DEFINITIONS

As discussed in Section 1, AI quality is a challenging concept to de-

fine. Consequently, QA for AI is at least as hard to specify. Still, we

need a working definition to initiate efforts in this direction. In this

section, we present the rationale behind our working definition of

AI quality and AI quality assurance. Moreover, we introduce sev-

eral related terms we use in collaborations with industry partners.

�e original definition of AI from the 1950s is “the science and en-

gineering of making intelligent machines”. Unfortunately, this defi-

nition turns AI into a moving target, as expectations on what con-

stitutes an intelligent machine change over time – a computer pro-

gram for logistics optimization in a warehouse would have been

considered intelligent in the 1950s whereas it now could be part of

an undergraduate computer science course. Since the term AI was

introduced, it has o�en been used to refer to so�ware solutions

of the future, displaying increasingly human-like capabilities. �e

notation of “intelligence” is still commonwhen referring to the gist

of AI/ML applications, as in Hulten’s textbook [16], but ideally we

want a definition that remains the same over time.

We argue that the most useful view on AI is to consider it as the

next wave of automation in the digital society. Extrapolating from

the sequence 1) digitization, 2) digitalization, and 3) digital trans-

formation [28], we consider AI as the next enabling wave in the

same direction – allowing automation of more complex tasks than

before. Our working definition of AI is “so�ware that enables au-

tomation of tasks that normally would require human intelligence”.

While still imprecise, the definition is good enough for us to later

define a delimited subset of AI that deserves our research focus.

Consulting thewell-known textbookonAI by Russell andNorvig

is one approach to explore the scope of AI [26]. �e table of con-

tents lists concepts such as searching, game playing, logic, plan-

ning, probabilistic reasoning, natural language processing, percep-

tion, robotics, and, of course, learning – all important components

2h�ps://github.com/ckaestne/seaibib
3h�ps://github.com/SE-ML/awesome-seml



The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q NeedsConference’17, July 2017, Washington, DC, USA

Figure 1: MLware in context.

when mimicking human intelligence. �e textbook clearly shows

that AI is more than ML. On the other hand, we argue that conven-

tional so�ware QA and testing can be applied to all AI techniques

that are implemented in source code. Supervised and unsupervised

learning, however, involves a transfer of control from source code

to data. Research efforts on QA tailored for this new paradigm are

what now would provide the highest return-on-investment. We

need to focus on ML-enabled so�ware – we refer to this as ML-

ware for short.

Figure 1 illustrates our view on MLware. �e future of systems

engineering will combine hardware and so�ware components, but

the so�ware part needs to be differentiated. A subset of so�ware

represents the fuzzy area of AI.We accept that this subset is neither

clear-cut nor consistent over time. MLware is a subset of AI that

rely on supervised and/or unsupervised learning. All MLware is

not made the same. From a QA perspective, we need to distinguish

between trained MLware that does not learn post deployment and

learning MLware that keeps improving as new experience is col-

lected post deployment. Learning MLware can be further divided

into offline learning (triggered re-training in batches) and online

learning (continuous update of trained models).

One might wonder where Reinforcement Learning (RL) fits in

our working definition of MLware. Currently, we exclude RL from

MLware. �e rationale is that in RL, the exploration and exploita-

tion of the learning agent is implemented in source code. RL shares

characteristics of both searching and automatic control. We posit

that so�ware testing approaches proposed for self-adaptive sys-

tems could be generalized to RL [9, 23], and thus the best use of re-

search resources is to focus on supervised and unsupervised learn-

ing – the dominating types of ML in practical applications.

A well-cited experience report by Sculley and his Google col-

leagues presents the vast and complex infrastructure required for

successful MLware [30]. �e authors describe this in terms of hid-

den technical debt of ML (cf. the lower part of Figure 2). Building

on this discussion, and the expression that “data is the new oil”, our

view is that data indeed fuels ML, but conventional source code is

still in the driving seat, i.e., MLware is fueled by data and driven

by code (cf. the upper part of Figure 2). From this standpoint, it is

obvious that conventional approaches to so�ware QA remain es-

sential in the new data-intensive paradigm of MLware. Moreover,

just as so�ware QA is dominated by so�ware testing, we expect

MLware QA to be dominated by MLware testing.

�e phenomenon of so�ware quality has been addressed in plen-

tiful publications. Among other things, this has resulted in stan-

dardized so�ware quality models such as ISO/IEC 25010. As ML-

ware still is so�ware, and certainly driven by source code, the ex-

isting quality models remain foundational. �e sister standard,

ISO/IEC 25012 Data �ality Model, adds a complementary data

dimension to the quality discussion. As MLware is fueled by data,

this standard is also highly relevant. Our working definition of AI

quality is largely an amalgamation of the definitions provided by

these two standards in the ISO/IEC 25000 series.

As mentioned in Section 2, there is no consensus in how to refer

to issues resulting in MLware misclassifications. Bug is not a suit-

able term to cover all functional insufficiencies, given its strong

connotation to source code defects. Still, we need a new similarly

succinct term in the context of MLware. We propose snag to refer

to the difference between existing and required behaviors of ML-

ware interwoven of data and source code. �e root cause of a snag

can be a bug either in the learning code or the infrastructure [36],

but it is o�en related to inadequate training data – we call the la�er

phenomenon a dug.

Figure 2 presents an overview of our perspective on issues de-

tected in MLware. In the upper le�, MLware is illustrated as a

type of so�ware that interweaves data (the fuel) and source code

(at the helm) to produce output. If a discordance is observed, we

call for a snag in the MLware fabric. Assuming that the require-

ments are valid and the observer interprets them correctly, root

causes of snags include bugs and dugs as well as environment is-

sues. �e lower part of the figure illustrates the technical debt in

machine learning as described by Sculley et al. [30]. Bugs can re-

side in the ML code (the white box), e.g., calling deprecated API

methods or incorrect use of tensor shapes [17]. On the other hand,

there might also be bugs in the rest of the infrastructure. While

the illustrated technical debt revolves around data, all gray boxes

will also depend on source code, from small exploratory scripts

to mature open source libraries – and the large systems enabling

MLware operations [16].

To summarize this section, our position is that research on QA

for AI would benefit from adhering to the definitions presented in

Table 1.

4 AIQ – AN AI META-TESTBED

Based on the working definitions in Section 3, we plan to support

AI QA by establishing an AI meta-testbed. A testbed is a venue

that provides a controlled environment to evaluate technical con-

cepts. Under current circumstances, in the middle of the ongoing

AI boom4, we believe that the establishment of a testbed for test-

ing MLware testing would be the most valuable contribution to AI

QA. Assessing the effectiveness of different testing techniques in

a controlled se�ing is not a new idea [5], neither is the concept of

testing test cases [37] – but a testbed dedicated to MLware testing

is novel. We call it the AIQ Meta-Testbed5.

Successful MLware development requires a close connection to

the operational environment. �e same need has shaped so�ware

development at Internet companies, resulting in DevOps – a com-

bination of philosophies, practices, and tools to reduce the time be-

tween development and operations while preserving quality [10].

Key enablers are Continuous Integration and Deployment (CI/CD).

DevOps that emphasize MLware development is o�en referred to

as MLOps [19], effectively adding Continuous Training (CT) to the

4Well aware of the two previous “AI winters”, periods with less interest and funding
due to inflated expectations.
5metatest.ai



Conference’17, July 2017, Washington, DC, USA M. Borg

Figure 2: MLware interwoven by data and code. Observed discordances in the output (snags) can originate in source code

defects (bugs) or data inadequacies (dugs).

mix. �e focus on continuousness is stressed in illustrations by the

infinity symbol.

Trust is fundamental for a successful product or service embed-

ding MLware. In 2019, an expert group set up by the European

Commission published ethics guidelines for trustworthy AI6. As

part of the guidelines, seven key requirements are introduced. Ta-

ble 2 shows a mapping between the EU requirements and the test-

ing properties identified in the survey by Zhang et .al. [36]. Our

preliminary analysis indicates that all but one requirement has (to

some extent) been targeted by academic research. �us, we believe

the time is right for systematic meta-testing in an MLOps context.

Figure 3 presents an overview of the AIQ Meta-Testbed in the

MLOps context. We will set up a contemporary MLOps pipeline

to allow controlled experiments in the lab while still providing an

environment relevant to industry practice. Test automation is the

backbone of MLOps, and MLware testing occurs in several phases

during the MLware engineering lifecycle [36] (cf. the textboxes in

Figure 3). First, the standard practice during model training is to

split data into training, validation, and test subsets. We refer to

this type of ML model testing as evaluation. Second, offline ML-

ware testing occurs prior to deployment – conducted on different

testing levels (input data, MLmodel, integration, system) and with

varying access levels of the MLware under test (white-box, data-

box, black-box) as defined by Riccio et al. [32]. �ird, online ML-

ware testing occurs a�er deployment. Common examples include

A/B testing and runtime monitoring to detect distributional shi�s.

6ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

�e AIQ Meta-Testbed will primarily focus on offline MLware

testing (the solid-border textbox in Figure 3). We plan to enable

meta-testing by providing a control panel for toggling testing tech-

niques (C) in Figure 3) corresponding to the testing properties in

Table 2, controlled fault-injection (A) (e.g., bug/dug injection, hy-

perparameter changes, mutationoperators) and state-of-the-art test

input generation (B) (e.g., search-based testing, GAN-based synthe-

sis, metamorphic relations, and adequacy-driven generation). �e

results from both MLware testing and meta-testing will be pre-

sented in dashboards (D).

Extrapolating from the publication trends reported in the recent

secondary studies [32, 36], there will be an avalanche of MLware

testing papers in the next years. Staying on top of the research

will become a considerable challenge and for practitioners with

limited experience in reading academic papers, the challenge will

be insurmountable – motivating the need to create an overview

and shortlisting the most promising techniques.

Activities at the AIQ Meta-Testbed will include external repli-

cations of studies on MLware testing. By performing controlled

meta-testing of the shortlisted techniques, we will be able to pro-

vide evidence-based recommendations on what techniques to use

and in which contexts. �e controlled environment of the AIQ

Meta-Testbedwill enable exploration of applied research questions,

such as:

• Which contextual factors influence the MLware test effec-

tiveness the most?



The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q NeedsConference’17, July 2017, Washington, DC, USA

Table 1: Working definitions of key terms related to the AIQ Meta-Testbed.

Term Definition Comments

AI A subset of so�ware that automates

tasks that normally would require hu-

man intelligence.

MLware, interwoven by data and source code,

is the most precise term to describe our re-

search interest. On the other hand, AI is a dom-

inant term in industry and news media. We

propose a pragmatic sacrifice of scientific pre-

ciseness in favour of industrial and societal rel-

evance. In practice, we treat AI as synonymous

with MLware in discussions with clients.

MLware A subset of AI that, fueled by data, re-

alizes functionality through supervised

and/or unsupervised learning.

MLware

Testing
Any activity that aims to learn about

MLware by executing it.

�e typical goal of testing is detecting differ-

ences between existing and required behav-

ior [2]. Other possible testing goals include ex-

ploratory testing and compliance testing.

AI�ality �e capability of MLware to satisfy

stated and implied needs under spec-

ified conditions while the underlying

data satisfy the requirements specific

to the application and its context.

MLware combines data and conventional

source code, thus we propose the amalgama-

tion of corresponding quality definitions from

the IEC/ISO 25000 series. Our proposal is in

line with discussions by Felderer et al. in the

context of testing data-intensive systems [11].

AI �ality

Assurance
Any systematic process to provide con-

fidence that the desired AI �ality is

maintained.

QA encompasses many activities throughout

the product lifecycle. However, in current AI

discussions with clients, we primarily interpret

it as MLware testing.

Snag Any imperfection in MLware that

causes a discordance between the exist-

ing and the required conditions.

�ere is an ongoing discussion in the research

community about how to refer to MLware mis-

classifications [32]. We argue against using the

term bug whenever there is unexpected output.

Instead, we propose calling it a snag in the ML-

ware fabric.

Bug A source code defect that causes a dis-

cordance between the existing and the

required conditions.

�e term bug has a firmly established mean-

ing, thuswe suggest restricting its use to source

code. As MLware is driven by code, bugs can

cause snags.

Dug A data inadequacy that causes a discor-

dance between the existing and the re-

quired conditions.

With bugs reserved for source code defects, we

need a novel expression for the data counter-

part. �e new term must be a worthy match

for the succinct “bug”. Currently, we call them

“dugs”.

• Which proposed MLware testing techniques scale to very

large DNNs?

• How to best integrateMLware testing in anMLOps pipeline?

• What should be done to limit test maintenance in an ML-

ware testing context?

• A�er observing a snag, how to support the subsequent

root cause analysis?

5 SUMMARY AND CONCLUDING REMARKS

AI is becoming a pervasive subset of so�ware, thus the elusive con-

cepts of AI quality and QA are increasingly important. We argue

that pragmatic interpretations are needed to advance the field, and

introduce a working definition of MLware as a subset of so�ware

within AI that realizes functionality through machine learning by

interweaving data and source code. Furthermore, we define AI

quality as “the capability of MLware to satisfy stated and implied

needs under specified conditions while the underlying data satisfy

the requirements specific to the application and its context”. We

recommend that AI QA first and foremost should be interpreted as

MLware testing and that the term bug shall be reserved for source



Conference’17, July 2017, Washington, DC, USA M. Borg

Table 2: Mapping the EU requirements for trustworthy AI and the testing properties targeted by publications on MLware

testing as identified by Zhang et al. [36]. Gray cells show functional testing, i.e., the scope of Riccio et al.’s secondary study [32]

Figure 3: �e AIQ Meta-Testbed in the MLOps context. We will focus on providing A) fault-injection, B) test input generation

for offline testing, C) a control panel for toggling offline testing techniques, and D) presenting the results in dashboards.

code defects – instead we propose “snag” to refer to observed dis-

cordances in the MLware fabric. Finally, we present the AIQ Meta-

Testbed – bridging academic research on MLware testing and in-

dustrial needs for quality by providing evidence-based recommen-

dations based on replication studies in a controlled environment.

ACKNOWLEDGEMENTS

�isworkwas funded by Pla�formen at CampusHelsingborg, Lund

University.

REFERENCES
[1] Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box: A

Survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–
52160. h�ps://doi.org/10.1109/ACCESS.2018.2870052

[2] Paul Ammann and Jeff Offu�. 2016. Introduction to So�ware Testing. Cambridge
University Press.

[3] Noushin Ashrafi. 2003. �e Impact of So�ware Process Improvement on �al-
ity: In �eory and Practice. Information & Management 40, 7 (2003), 677–690.
h�ps://doi.org/10.1016/S0378-7206(02)00096-4

[4] Aharon Azulay and Yair Weiss. 2019. Why Do Deep Convolutional Networks
Generalize so Poorly to Small Image Transformations? J. of Machine Learning
Research 20 (2019), 25.

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/S0378-7206(02)00096-4


The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q NeedsConference’17, July 2017, Washington, DC, USA

[5] V.R. Basili and R.W. Selby. 1987. Comparing the Effectiveness of So�ware Test-
ing Strategies. IEEE Transactions on So�ware Engineering SE-13, 12 (1987), 1278–
1296. h�ps://doi.org/10.1109/TSE.1987.232881

[6] Markus Borg. 2019. Explainability First! Cousteauing the Depths of Neural
Networks to Argue Safety. In Explainable So�ware for Cyber-Physical Sys-
tems (ES4CPS): Report from the GI Dagstuhl Seminar 19023, Joel Greenyer, Malte
Lochau, and �omas Vogel (Eds.). 26–27. h�p://arxiv.org/abs/1904.11851

[7] Markus Borg et al. 2019. Safely Entering the Deep: A Review of Verifica-
tion and Validation for Machine Learning and a Challenge Elicitation in the
Automotive Industry. J. of Automotive So�ware Engineering 1, 1 (2019), 1–19.
h�ps://doi.org/10.2991/jase.d.190131.001

[8] Jan Bosch, Ivica Crnkovic, and Helena Holmstrom Olsson. 2020. Engi-
neering AI Systems: A Research Agenda. arXiv:2001.07522 [cs] (Jan. 2020).
h�p://arxiv.org/abs/2001.07522

[9] Kai-Yuan Cai. 2002. Optimal So�ware Testing and Adaptive So�ware Testing
in the Context of So�ware Cybernetics. Information and So�ware Tech. 44, 14
(2002), 841–855. h�ps://doi.org/10.1016/S0950-5849(02)00108-8

[10] FMA Erich, Chintan Amrit, and Maya Daneva. 2017. A �alitative Study of
DevOps Usage in Practice. Journal of So�ware: Evolution and Process 29, 6 (2017),
e1885.

[11] Michael Felderer, Barbara Russo, and Florian Auer. 2019. On Testing
Data-Intensive So�ware Systems. In Security and �ality in Cyber-
Physical Systems Engineering, Stefan Biffl, Ma�hias Eckhart, Arndt Lüder,
and Edgar Weippl (Eds.). Springer International Publishing, 129–148.
h�ps://doi.org/10.1007/978-3-030-25312-7 6

[12] Daniel Galin. 2003. So�ware�ality Assurance: From�eory to Implementation.
Pearson, Harlow, England ; New York.

[13] D. Gelperin and B. Hetzel. 1988. �e Growth of So�ware Testing. Commun.
ACM 31, 6 (1988), 687–695. h�ps://doi.org/10.1145/62959.62965

[14] Carlos A. Gonzalez and Jordi Cabot. 2014. Formal Verification of Static So�ware
Models in MDE: A Systematic Review. Information and So�ware Tech. 56, 8
(2014), 821–838. h�ps://doi.org/10.1016/j.infsof.2014.03.003

[15] J. Herbsleb et al. 1997. So�ware �ality and the Capability Maturity Model.
Commun. ACM 40, 6 (1997), 30–40.

[16] Geoff Hulten. 2018. Building Intelligent Systems: A Guide to Machine Learning
Engineering (1 ed.). Apress, New York, NY.

[17] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In Proc. of the 42nd Int’l Conf. on So�ware Engineering.

[18] Fei Jiang et al. 2017. Artificial Intelligence in Healthcare:
Past, Present and Future. Stroke and Vascular Neurology 2,
4 (2017), 230–243. h�ps://doi.org/10.1136/svn-2017-000101
arXiv:h�ps://svn.bmj.com/content/2/4/230.full.pdf

[19] Ioannis Karamitsos, Saeed Albarhami, and Charalampos Apostolopoulos. 2020.
Applying DevOps Practices of Continuous Automation for Machine Learning.
Information 11, 7 (2020), 363.

[20] Mohamad Kassab, Joanna F. DeFranco, and Phillip A. Laplante. 2017. So�-
ware Testing: �e State of the Practice. IEEE So�ware 34, 5 (2017), 46–52.
h�ps://doi.org/10.1109/MS.2017.3571582

[21] Christian Kästner and Eunsuk Kang. 2020. Teaching So�ware En-
gineering for AI-Enabled Systems. arXiv:2001.06691 [cs] (Jan. 2020).
h�p://arxiv.org/abs/2001.06691

[22] Hod Lipson and Melba Kurman. 2016. Driverless: Intelligent Cars and the Road
Ahead. MIT Press.

[23] Sara Mahdavi-Hezavehi et al. 2017. A Systematic Literature Review on
Methods �at Handle Multiple �ality A�ributes in Architecture-Based
Self-Adaptive Systems. Information and So�ware Tech. 90 (2017), 1–26.
h�ps://doi.org/10.1016/j.infsof.2017.03.013

[24] Ivan Mistrik, Richard M. Soley, Nour Ali, John Grundy, and Bedir Tekinerdogan
(Eds.). 2016. So�ware �ality Assurance: In Large Scale and Complex So�ware-
intensive Systems. Morgan Kaufmann, Waltham, Mass.

[25] Alessandro Orso and Gregg Rothermel. 2014. So�ware Testing: A Research
Travelogue (2000fi�2014). In Future of So�ware Engineering Proceedings. 117–
132. h�ps://doi.org/10.1145/2593882.2593885

[26] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach
(3 ed.). Pearson, Upper Saddle River, NJ.

[27] Rick Salay, Rodrigo �eiroz, and Krzysztof Czarnecki. 2018.
An Analysis of ISO 26262: Machine Learning and Safety in
Automotive So�ware. SAE Technical Paper 2018-01-1075.
h�ps://www.sae.org/publications/technical-papers/content/2018-01-1075/

[28] Daniel R. A. Schallmo and Christopher A. Williams. 2018. History
of Digital Transformation. Digital Transformation Now! (2018), 3–8.
h�ps://doi.org/10.1007/978-3-319-72844-5 2

[29] Gordon Schulmeyer. 1987. Handbook Of So�ware�ality Assurance (1 ed.). Pren-
tice Hall, Lebanon, Indiana, USA.

[30] D. Sculley et al. 2015. Hidden Technical Debt in Machine Learning Systems. In
Proc. of the 28th Int’l Conf. on Neural Information Proc. Systems. 2503–2511.

[31] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. 2020. Adop-
tion and Effects of So�ware Engineering Best Practices in Machine Learning. In
Proc. of the 14th International Symposium on Empirical So�ware Engineering and
Measurement.

[32] Riccio Vincenzo, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova,
Michael Weiss, and Paolo Tonella. 2020. Testing Machine Learning based Sys-
tems: A SystematicMapping. Empirical So�ware Engineering (To appear) (2020).

[33] Andreas Vogelsang and Markus Borg. 2019. Requirements Engineer-
ing for Machine Learning: Perspectives from Data Scientists. In Proc.
of the 27th Int’l Requirements Engineering Conf. Workshops. 245–251.
h�ps://doi.org/10.1109/REW.2019.00050

[34] Neil Walkinshaw. 2017. So�ware �ality Assurance: Consistency in the Face of
Complexity and Change. Springer.

[35] Danny Weyns et al. 2012. A Survey of Formal Methods in Self-Adaptive Sys-
tems. In Proc. of the 5th Int’l C* Conf. on Comp. Science and So�ware Eng. 67–79.
h�ps://doi.org/10.1145/2347583.2347592

[36] Jie M. Zhang et al. 2020. Machine Learning Testing: Survey, Landscapes and
Horizons. IEEE Transactions on So�ware Engineering (2020), (Early Access).
h�ps://doi.org/10.1109/TSE.2019.2962027

[37] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. 2018. A System-
atic Literature Review of How Mutation Testing Supports �ality Assurance
Processes. So�ware Testing, Verification and Reliability 28, 6 (2018), e1675.
h�ps://doi.org/10.1002/stvr.1675

https://doi.org/10.1109/TSE.1987.232881
http://arxiv.org/abs/1904.11851
https://doi.org/10.2991/jase.d.190131.001
http://arxiv.org/abs/2001.07522
https://doi.org/10.1016/S0950-5849(02)00108-8
https://doi.org/10.1007/978-3-030-25312-7_6
https://doi.org/10.1145/62959.62965
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1136/svn-2017-000101
http://arxiv.org/abs/https://svn.bmj.com/content/2/4/230.full.pdf
https://doi.org/10.1109/MS.2017.3571582
http://arxiv.org/abs/2001.06691
https://doi.org/10.1016/j.infsof.2017.03.013
https://doi.org/10.1145/2593882.2593885
https://www.sae.org/publications/technical-papers/content/2018-01-1075/
https://doi.org/10.1007/978-3-319-72844-5_2
https://doi.org/10.1109/REW.2019.00050
https://doi.org/10.1145/2347583.2347592
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1002/stvr.1675


This figure "EUmapping.png" is available in "png"
 format from:

http://arxiv.org/ps/2009.05260v1

http://arxiv.org/ps/2009.05260v1


This figure "aiq.png" is available in "png"
 format from:

http://arxiv.org/ps/2009.05260v1

http://arxiv.org/ps/2009.05260v1


This figure "issues.png" is available in "png"
 format from:

http://arxiv.org/ps/2009.05260v1

http://arxiv.org/ps/2009.05260v1


This figure "mlware.png" is available in "png"
 format from:

http://arxiv.org/ps/2009.05260v1

http://arxiv.org/ps/2009.05260v1

	Abstract
	1 Introduction
	2 Background and Related Work
	3 AI Quality Assurance – Working Definitions
	4 AIQ – An AI Meta-Testbed
	5 Summary and Concluding Remarks
	References

