Abstract
Fault detection, isolation and recovery (FDIR) subsystems are an accepted technique to make safety-critical systems resilient against faults and failures. Yet, these subsystems should be devised only for those faults that violate the system’s requirements, while providing a correct approach such that requirements are met again. As a consequence, the obtained system is minimal, although complete, and robust both with respect to safety and performance requirements. In this paper, we propose a systematic and automated approach based on formal methods that includes (1) the evaluation of the relevance of faults based on quantitative risk assessment, and (2) the validation of system robustness by statistical model checking. We apply this approach on an excerpt of a real-life autonomous robotics case study, and we report on the implementation and results obtained with the \(\mathcal {S}\text {BIP}\) framework.
This work has been supported by the EU’s H2020 research and innovation programme under grant agreement #730080 (ESROCOS) and #700665 (CITADEL).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
BIP stands for Behavior - Interaction - Priority.
- 2.
We refer the readers to [24] for the formal definition of the stochastic real-time BIP.
- 3.
- 4.
The suffixes out, in and return used in Fig. 3 are modeling the directionality of the requests. Out models that the component sends the request. In models that the component receives the request. Return models that the action associated with the request has finished executing.
- 5.
Notice that the values for P, D, \(\textit{MIAT}\), and size are part of the system specification.
- 6.
Model sources are available at https://drive.google.com/file/d/1oN90ZraClQxAH5hHE2tl7t2IMsZVzo7L/view?usp=drivesdk.
- 7.
The system architecture and specification, \(\mathsf {Watchdog}\) included, have been provided in the frame of this case study such that the used resources (e.g., number of components and threads) are minimal.
References
ESROCOS Planetary Exploration Demonstrator. https://github.com/ESROCOS/plex-demonstrator-record
ESROCOS Project Github Repository. https://github.com/ESROCOS
Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The MIT Press, Cambridge (2008)
Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp. 32–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-7_4
Barringer, H., et al. (eds.): RV 2010. LNCS, vol. 6418. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9
Batteux, M., Prosvirnova, T., Rauzy, A., Kloul, L.: The AltaRica 3.0 project for model-based safety assessment. In: 11th IEEE International Conference on Industrial Informatics, INDIN 2013, Bochum, Germany, 29–31 July 2013, pp. 741–746. IEEE (2013). https://doi.org/10.1109/INDIN.2013.6622976
Bittner, B., et al.: The xSAP safety analysis platform. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 533–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_31
Bittner, B., et al.: An integrated process for FDIR design in aerospace. IMBSA 2014, 82–95 (2014)
Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 103–129. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5_5
Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_22
David, A., Larsen, K., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.: Statistical model checking for biological systems. Int. J. Softw. Tools Technol. Transf. (STTT) 17(3), 351–367 (2015)
David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT 17(4), 397–415 (2015)
Dragomir, I.: ESROCOS planetary exploration demonstrator: the watchdog component in TASTE and BIP. https://github.com/ESROCOS/control-mc_watchdog
Dragomir, I., Iosti, S., Bozga, M., Bensalem, S.: Designing systems with detection and reconfiguration capabilities: a formal approach. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 155–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_11
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_8
Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_38
Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo computations. J. Oper. Res. Soc. Am. 1(5), 263–278 (1953). http://www.jstor.org/stable/166789
Kulkarni, V.G.: Brownian motion. Introduction to Modeling and Analysis of Stochastic Systems. STS, pp. 247–280. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-1772-0_7
Mediouni, B.L., Dragomir, I., Nouri, A., Bensalem, S.: Quantitative risk assessment in the design of resilient systems. Technical report TR-2018-10, VERIMAG (2018). http://www-verimag.imag.fr/TR/TR-2018-10.pdf
Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.: \(\cal{S}\)BIP 2.0: statistical model checking stochastic real-time systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 536–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_33
Munoz, M., et al.: ESROCOS: a robotic operating system for space and terrestrial applications. In: Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA) 2017, Leiden, Netherlands, 20–22 June 2017 (2017)
Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Performance evaluation of stochastic real-time systems with the SBIP framework. Int. J. Crit. Comput.-Based Syst. 8(3–4), 340–370 (2018)
Ocon, J.,et al.: The ERGO framework and its use in planetary/orbital scenarios. In: International Astronautical Congress (IAC) 2018, Bremen, Germany, 1–5 October 2018 (2018)
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 46–57 (1977). https://doi.org/10.1109/SFCS.1977.32
Raman, B., et al.: Stochastic modeling and performance analysis of multimedia SoCs. In: International Conference on Systems, Architectures, Modeling and Simulation, SAMOS 2013, pp. 145–154 (2013)
Wander, A., Forstner, R.: Innovative Fault Detection, Isolation and Recovery Strategies On-Board Spacecraft: State of the Art and Research Challenges. Deutscher Luft- und Raumfahrtkongress (2012)
Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchronous Events. Ph.D. thesis, Carnegie Mellon (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mediouni, B.L., Dragomir, I., Nouri, A., Bensalem, S. (2020). Model-Based Design of Resilient Systems Using Quantitative Risk Assessment. In: Ben Hedia, B., Chen, YF., Liu, G., Yu, Z. (eds) Verification and Evaluation of Computer and Communication Systems. VECoS 2020. Lecture Notes in Computer Science(), vol 12519. Springer, Cham. https://doi.org/10.1007/978-3-030-65955-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-65955-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65954-7
Online ISBN: 978-3-030-65955-4
eBook Packages: Computer ScienceComputer Science (R0)