Skip to main content

An Evaluation of Estimation Techniques for Probabilistic Verification

  • Conference paper
  • First Online:
Verification and Evaluation of Computer and Communication Systems (VECoS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12519))

  • 352 Accesses

Abstract

Formal techniques for verifying stochastic systems (e.g.., probabilistic model checking) do not generally scale well with respect to the system size. Therefore, simulation-based techniques such as statistical model checking are often used in practice. In this paper, we focus on stochastic hybrid systems and evaluate Monte Carlo and Quasi-Monte Carlo (QMC) methods for computing probabilistic reachability. We compare a number of interval estimation techniques based on the Central Limit Theorem (CLT), and we also introduce a new approach based on the CLT for computing confidence intervals for probabilities near the borders of the [0,1] interval. We empirically show that QMC techniques and our CLT approach are accurate and efficient in practice. Our results readily apply to any stochastic system and property that can be checked by simulation, and are hence relevant for statistical model checking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://github.com/dreal/probreach/tree/master/model.

References

  1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat. 52(2), 119–126 (1998)

    MathSciNet  Google Scholar 

  2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

    Chapter  Google Scholar 

  3. Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948)

    Article  MathSciNet  Google Scholar 

  4. Anscombe, F.J.: On estimating binomial response relations. Biometrika 43(3/4), 461–464 (1956)

    Article  MathSciNet  Google Scholar 

  5. Antonov, A.A., Ermakov, S.M.: Empirically estimating error of integration by Quasi-Monte Carlo method. Vestnik St. Petersburg Univ. Math. 47(1), 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  6. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  Google Scholar 

  7. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70

    Chapter  MATH  Google Scholar 

  8. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4), 404–413 (1934)

    Article  Google Scholar 

  9. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 128–133 (2001)

    MathSciNet  Google Scholar 

  10. Dean, N., Pagano, M.: Evaluating confidence interval methods for binomial proportions in clustered surveys. J. Surv. Stat. Methodol. 3(4), 484–503 (2015)

    Article  Google Scholar 

  11. Edwin, W.B.: Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22(158), 209–212 (1927)

    Article  Google Scholar 

  12. Fränzle, M., Chen, M., Kröger, P.: In memory of Oded Maler: automatic reachability analysis of hybrid-state automata. ACM SIGLOG News 6(1), 19–39 (2019)

    Article  Google Scholar 

  13. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp. 305–314 (2012)

    Google Scholar 

  14. Gnewuch, M., Srivastav, A., Winzen, C.: Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. J. Complex. 25(2), 115–127 (2009)

    Article  MathSciNet  Google Scholar 

  15. Mahajan, K.K., Arora, S., Kaur, K.: Bayesian estimation for Gini index and a poverty measure in case of Pareto distribution using Jeffreys’ prior. MASA 10(1), 63–72 (2015)

    Article  Google Scholar 

  16. Pradhan, V., Banerjee, T.: Confidence interval of the difference of two independent binomial proportions using weighted profile likelihood. Commun. Stati. - Simul. Comput. 37(4), 645–659 (2008)

    Article  MathSciNet  Google Scholar 

  17. Shmarov, F., Zuliani, P.: ProbReach: verified probabilistic \(\delta \)-reachability for stochastic hybrid systems. In: HSCC, pp. 134–139. ACM (2015)

    Google Scholar 

  18. Shmarov, F., Zuliani, P.: Probabilistic hybrid systems verification via SMT and Monte Carlo techniques. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 152–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6_10

    Chapter  Google Scholar 

  19. Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  20. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  21. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp. 327–338 (1985)

    Google Scholar 

  22. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

    Article  MathSciNet  Google Scholar 

  23. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to stateflow/simulink verification. Formal Methods Syst. Des. 43(2), 338–367 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zuliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasileva, M., Zuliani, P. (2020). An Evaluation of Estimation Techniques for Probabilistic Verification. In: Ben Hedia, B., Chen, YF., Liu, G., Yu, Z. (eds) Verification and Evaluation of Computer and Communication Systems. VECoS 2020. Lecture Notes in Computer Science(), vol 12519. Springer, Cham. https://doi.org/10.1007/978-3-030-65955-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65955-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65954-7

  • Online ISBN: 978-3-030-65955-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics