Skip to main content

The Modeling and Simulation on SRM Drive System Using Variable-Proportional-Desaturation PI Regulator

  • Conference paper
  • First Online:
Verification and Evaluation of Computer and Communication Systems (VECoS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12519))

  • 344 Accesses

Abstract

In this article, a novel variable-proportional-desaturation PI (VPDPI) speed regulator is designed to improve the dynamic performance and anti-disturbance of the drive system. Firstly, an equivalent model of three closed-loop control system for switched reluctance motor (SRM) is established based on the direct torque control (DTC) strategy. Secondly, the control parameters of VPDPI speed regulator are adjusted in terms of its equivalent mathematical model and the system response. Finally, the effectiveness of the proposed method is verified by MATLAB/Simulink platform under the different operation conditions. The simulation results indicate that the output of the controlled system has the shorter settling time and avoiding the overshoot. Consequently, the dynamic performance and its anti-disturbance ability of the system are both improved.

Supported by the Natural Science Foundation of China under Grant No. 61563045.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, H., Zhao, W.Z.: Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle. Mech. Syst. Signal Process. 101, 389–404 (2018)

    Article  Google Scholar 

  2. Hu, J.J., Yang, Y., Jia, M.X., et al.: A novel energy optimization control strategy for electric drive system based on current angle. Appl. Sci. 10(3778), 3778 (2020)

    Article  Google Scholar 

  3. Xin, X.S., Shan, H.C., Yang, Y.: Control strategy for motor drive system of electric vehicle. IEEJ Trans. Electr. Electron. Eng. 11(3), 374–383 (2016)

    Article  Google Scholar 

  4. Chaoui, H., Khayamy, M., Okoye, O., et al.: Simplified speed control of permanent magnet synchronous motors using genetic algorithms. IEEE Trans. Power Electron. 34(4), 3563–3574 (2019)

    Article  Google Scholar 

  5. Hu, H.S., Wang, T.T., Zhao, S.Y., et al.: Speed control of brushless direct current motor using a genetic algorithm—optimized fuzzy proportional integral differential controller. Adv. Mech. Eng. 11(11), 1–13 (2019)

    Article  Google Scholar 

  6. Tang, Y., He, Y.J., Wang, F.X., Lee, D.-H., Ahn, J.-W., Kennel, R.: Back-EMF-based sensorless control system of hybrid SRM for high-speed operation. Adv. Mech. Eng. 112(6), 867–873 (2018)

    Google Scholar 

  7. Kohei, A., Kan, A.: High speed SRM using vector control for electric vehicle. CES Trans. Electr. Mach. Syst. 4(1), 61–68 (2020)

    Article  Google Scholar 

  8. Mayne, D., Falugi, P.: Stabilizing conditions for model predictive control. Int. J. Robust Nonlinear Control 29(4), 894–903 (2019)

    Article  MathSciNet  Google Scholar 

  9. Li, C.H., Wang, G.F., Li, Y.: An improved finite-state predictive torque control for switched reluctance motor drive. IET Electr. Power Appl. 12(1), 144–151 (2018)

    Article  Google Scholar 

  10. Xin, L., Shamsi, P.: Model predictive current control of switched reluctance motors with inductance auto-calibration. IEEE Trans. Ind. Electron. 63(6), 3934–3941 (2016)

    Article  Google Scholar 

  11. Abdolrahman, R., Behrouz, S.: A modified fractional-order unscented Kalman filter for nonlinear fractional-order systems. Circ. Syst. Signal Process. 37(9), 3756–3784 (2018)

    Article  MathSciNet  Google Scholar 

  12. Pandey, S., Junghare, A.S., Dwivedi, P., et al.: A newborn hybrid anti-windup scheme for fractional order proportional integral controller. Electr. Eng. 43(6), 3049–3063 (2018)

    Google Scholar 

  13. Li, C.H., Wang, G.F., Li, Y., et al.: Direct adaptive neural network control for switched reluctance motors with input saturation. IEEJ Trans. Electr. Electron. Eng. 13(12), 1804–1814 (2018)

    Article  Google Scholar 

  14. Ben, J.A., Chaker, N., Aloui, H., et al.: Adaptive fuzzy-PI control for speed’s tracking in a leisure electrical vehicle. J. Electr. Syst. 12(3), 475–489 (2016)

    Google Scholar 

  15. Kalai Selvi, R., Suja Mani Malar, R.: A bridgeless Luo converter based speed control of switched reluctance motor using Particle Swarm Optimization tuned proportional integral controller. Microprocess. Microsyst. 75, 103039 (2020)

    Article  Google Scholar 

  16. Stanislav, V., Bohumil, S.: Saturation in engineering simulation. IFAC Proc. Volumes 46(17), 102–107 (2013)

    Article  Google Scholar 

  17. Azar, A.T., Serrano, F.E.: Design and modeling of anti wind up PID controllers. In: Zhu, Q., Azar, A. (eds.) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol. 319, pp. 1–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12883-2_1

    Chapter  Google Scholar 

  18. Srikanth, M., Sreedhar, L., Suresh Kumar, M.V.: Digital PI controller using anti-wind-up mechanism for a speed controlled electric drive system. Int. J. Innovative Technol. Exploring Eng. 3(1), 239–242 (2013)

    Google Scholar 

  19. Hoo, C.L., Chung, E.C.Y., Haris, S.M., Mohamed, N.A.N.: Steady-state integral proportional integral controller for PI motor speed controllers: a theoretical approach. ICIC Express Lett. 9(6), 1777–1782 (2015)

    Google Scholar 

  20. Mohammad, R.S., Esmaeel, K., Siamak, G.: An anti-windup rate-varying integral control applied to electromechanical actuator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(4), 692–702 (2015)

    Article  Google Scholar 

  21. Hafeezul, H., Halil, I.O.: FLC-DTC method for torque ripples minimization of 8/6 switched reluctance motors drive. J. Adv. Res. Electr. Eng. 4(1), 51–55 (2020)

    Google Scholar 

  22. Memon, A.A., Shaikh, M.M.: Input data for mathematical modeling and numerical simulation of switched reluctance machines. Data in Brief 14, 138–142 (2017)

    Article  Google Scholar 

  23. Zeng, M.: Research on the torque mathematical model of 12/8 pole switched reluctance motor. Mech. Electron. Inf. 3, 20–21 (2019)

    Google Scholar 

  24. Song, S.C., Qu, B.N., Song, J.C.: Application of variable gain PI controller in switched reluctance motor. Miniature Spec. Mot. 45(8), 61–64, 67 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ZiHan, W., Mi, Z., ChangXin, F. (2020). The Modeling and Simulation on SRM Drive System Using Variable-Proportional-Desaturation PI Regulator. In: Ben Hedia, B., Chen, YF., Liu, G., Yu, Z. (eds) Verification and Evaluation of Computer and Communication Systems. VECoS 2020. Lecture Notes in Computer Science(), vol 12519. Springer, Cham. https://doi.org/10.1007/978-3-030-65955-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65955-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65954-7

  • Online ISBN: 978-3-030-65955-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics