
Coverage Analysis of Net Inscriptions in
Coloured Petri Net Models?

Faustin Ahishakiye, José Ignacio Requeno Jarabo,
Lars Michael Kristensen, and Volker Stolz

Dept. of Computer Science, Electrical Engineering, and Mathematical Sciences
Faculty of Engineering and Natural Science

Western Norway University of Applied Sciences
{fahi,jirj,lmkr,vsto}@hvl.no

Abstract. High-level Petri net such as Coloured Petri Nets (CPNs) are
characterised by the combination of Petri nets and a high-level program-
ming language. In the context of CPNs and CPN Tools, the inscrip-
tions (e.g., arc expressions and guards) are specified using Standard ML
(SML). The application of simulation and state space exploration (SSE)
for validating CPN models traditionally focusses on behavioural prop-
erties related to net structure, i.e., places and transitions. This means
that the net inscriptions are only implicitly validated, and the extent
to which these have been covered is not made explicit. The contribu-
tion of this paper is an approach that establishes a link between cover-
age analysis known from programming languages and net inscriptions of
CPN models. Specifically, we consider Modified Condition/Decision Cov-
erage (MC/DC) which generalises branch coverage of SML decisions. We
have implemented our approach in a library for CPN Tools comprised of
an annotation and instrumentation mechanism that transparently inter-
cept and collect evaluations of boolean conditions, and a post-processing
tool that determines whether each decision is MC/DC-covered by a set
of models executions (runs). We evaluate our approach on four larger
public-available CPN models.

1 Introduction

Coverage analysis is important for programs in relation to fault detection. Struc-
tural coverage criteria are required for software safety and quality design assur-
ance [12], and a low coverage indicates that the software product has not been
extensively tested. As an example, two common metrics are statement- and
branch coverage [29], where a low coverage indicates that certain instructions
have never actually been executed. Coloured Petri Nets [9] and CPN Tools [8,2]
have been widely used for constructing models of concurrent systems with sim-
ulation and state space exploration being the two main techniques for dynamic
? This work was partially supported by the European Horizon 2020 project COEMS
under grant agreement no. 732016 (https://www.coems.eu/). We thank Svetlana
Jakšić for discussions on this work.

ar
X

iv
:2

00
5.

09
80

6v
1

 [
cs

.S
E

]
 2

0
M

ay
 2

02
0

2 F. Ahishakiye et al.

analysis. CPN model analysis is generally concerned with behavioural proper-
ties related to boundedness, reachability, liveness, and fairness properties. This
means that the main focus is on structural elements such as places, tokens, mark-
ings (states), transitions and transition bindings. Arc expressions and guards are
only implicitly considered via the evaluation of these net inscriptions taking place
as part of the computation of transition enabling and occurrence during model
execution. This means that design errors in net inscriptions may not be detected
as we do not obtain explicit information on for instance whether both branches
of an if-then-else expression on an arc have been covered.

We argue that from a software engineering perspective, it is important to be
explicitly concerned with quantitative and qualitative analysis of the extent to
which net inscriptions have been covered. Our hypothesis is that the coverage
criteria used for traditional source code can also be applied to the net inscrip-
tions of CPN models. Specifically, we consider the modified condition decision
coverage (MC/DC) criterion. MC/DC is a well-established coverage criteria for
safety-critical systems, and is required by certification standards, such as the DO-
178C [17] in the domain of avionic software systems. In the context of MC/DC,
a decision is a boolean expression composed of sub-expressions and boolean con-
nectives (such as logical “and”). A condition is an atomic (boolean) expression.
According to the definition of MC/DC [11,18], each condition in a decision has
to show an independent effect on that decision’s outcome by: (1) varying just
that condition while holding fixed all other possible conditions; or (2) varying
just that condition while holding fixed all other possible conditions that could
affect the outcome. MC/DC is a coverage criterion at the condition level and
is recommended due to its advantages of being sensitive to code structure, re-
quiring few test cases (n + 1 for n conditions), and it is the only criterion that
considers the independence effect of each condition.

Coverage analysis for software is usually provided through dedicated instru-
mentation of the software under test, either by the compiler, or additional tool-
ing, such as binary instrumentation. Transferring this to a CPN model under
test, our aim is to combine the execution of a CPN model (by simulation or state
space exploration) with coverage analysis of SML guard and arc expressions. In
our setting, there is no coverage analysis of the SML expressions integrated into
a CPN model. This means that to record coverage data for a CPN model under
test, it is necessary to instrument the boolean expressions such that the truth-
values of individual conditions are logged in addition to the overall outcome of
the decision. Our approach to instrumentation makes use of side-effects by out-
putting intermediate results of conditions and decisions, which we then process
to obtain the coverage verdict. No modifications to the net structure of the CPN
model are necessary. Furthermore, we have decoupled the analysis of the cover-
age data from the model execution so that it does not delay the simulation and
state space exploration, and it could even run in parallel.

The rest of this paper is organised as follows. In Section 2, we introduce
the MC/DC coverage criterion in more detail. In Section 3, we present our ap-
proach to deriving coverage data and show how to instrument guard and arc

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 3

expressions to collect the required coverage data. In Section 4 we consider the
post-processing of coverage data. We demonstrate the application of our library
for coverage analysis on public available 3rd-party CPN models in Section 5. In
this section, we also evaluate our approach with respect to the currently manual
effort for instrumentation, overhead in execution, and discuss our findings. Sec-
tion 6 discusses related work, and we present our conclusions including directions
for future work in Section 7. Our coverage analysis library, the example models,
the Python code to produce reports and graphs, and documentation is available
at https://github.com/selabhvl/cpnmcdctesting.

2 Coverage Analysis and MC/DC

There are two main measures of test coverage: requirements coverage and struc-
ture coverage [12]. Requirements coverage considers how well requirement- and
specification-based test cases verified the implementation, and establishes a re-
lationship between requirements and test cases. Structural coverage determines
how much of the program/code structure was executed by the requirements-
based test cases, and establishes traceability between the code structure and the
test cases. Normally, requirements coverage analysis precedes structural cover-
age analysis. However, requirements may not have a complete specification of all
behaviours present in the executable code. In addition, requirements may not be
specified at a sufficient level of granularity to assure full testing of all functional
behaviour of the code. Hence, requirements-based testing alone cannot confirm
that the code does not include bugs.

When considering CPN models under test, we do not generally know the
requirements underlying the construction of the model. Furthermore, we cannot
assume the explicit presence of test cases as they will only be given implicitly
via the behaviour of the model and its initial marking (state). In the terminol-
ogy of coverage analysis of code, we will therefore be concerned with structural
(code) coverage analysis of guard- and arc expressions. For these expressions,
the test cases will arise as the transition bindings (occurrence modes) in which
these expressions happens to be evaluated during a simulation or a state space
exploration of the model.

A guard expression is a list of Boolean expressions all of which are required
to evaluate to true in a given transition binding for the transition to be enabled.
We refer to such Boolean expressions as decisions. Similarly, an if-then-else ex-
pression on an arc will have a decision determining whether the then- or the
else-branch will be taken. Decision are in turn constructed from conditions and
Boolean operators according to the definitions below.

Definition 1 (Condition). A condition is a Boolean expression containing
no Boolean operators except for the unary operator NOT.

Definition 2 (Decision). A decision is a Boolean expression composed of
conditions and zero or more Boolean operators. It is denoted by D(c1, c2, ci, · · · , cn),
where ci, 1 ≤ i ≤ n are Boolean conditions.

https://github.com/selabhvl/cpnmcdctesting

4 F. Ahishakiye et al.

As an example, we may have a guard (or an arc expression) containing a
decision of the form D = (a ∧ b) ∨ c, where a, b, and c are conditions. These
conditions may in turn refer to the values bound to the variables of the transition.

The evaluation of a decision requires a test case assigning a value to the
conditions of the decision according to the following definition.

Definition 3 (Test case). Given a decision D, a test case is a truth vector
(also called a test-evaluation) TC = (e1, e2, e3, · · · , en) where ei ∈ {0, 1, ?} is the
value assignment to condition ci of D, with ? meaning that a condition was not
evaluated due to short-circuiting (see below). A test suite for a decision is a set
of test cases {TC1, TC2, · · · , TCk}.

Different software levels (A-D) require different structure coverage criteria,
statement coverage for software levels A-C, branch/decision coverage for soft-
ware levels A-B, and MC/DC for software level A [29]. Statement coverage is
considered inadequate because it is insensitive to some control structures. That
is, if there is no test case that causes a conditional statement to evaluate false,
statement coverage rates the code fully covered, but the code may fail, if a
condition ever evaluates false [4]. In addition, it does not report whether loops
reach their termination condition, only whether the loop body was executed.
Both statement- and branch coverage are completely insensitive to the logical
operators (∨ and ∧). In [12], coverage criteria taking logical expressions into con-
sideration have been defined and proposed. These are condition coverage (CC),
where each condition in a decision takes on each possible outcome at least once
true and at least once false during testing; decision coverage (DC) requiring only
each decision to be evaluated once true and once false; and multiple condition
coverage (MCC) which is an exhaustive testing of all possible input combina-
tions of conditions to a decision. CC and DC are considered inadequate due to
ignorance of the independence effect of conditions on the decision outcome. MCC
requires 2n tests for a decision with n inputs. This results in exponential growth
in the number of test cases, and is therefore time-consuming and impractical for
many test cases.

DC has also the disadvantage that it ignores branches within Boolean expres-
sions which occur due to short-circuit operators. Short-circuit means that the
right operand of the and -operator (&&/∧) is not evaluated if the left operand
is false, and the right operand of the or -operator (||/∨) is not evaluated if the
left operand is true. Consider an example in Listing 1.1, the decision is eval-
uated to true when condition1 and condition2 are true whereas function1 is
short-circuited in that case. When condition1 is false, the decision is evaluated
to false, condition2 is not evaluated and there is no call to function1.

Listing 1.1: Illustration of short-circuit evaluation
i f (cond i t i on1 && (cond i t i on2 | | f unc t i on1 ()))

statement1 ;
else

statement2 ;

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 5

To address the limitations of the structure coverage criteria discussed above,
modified condition/decision coverage (MC/DC) is considered. In safety critical
systems such as in the avionics industry, software certification requires a vendor
to demonstrate that the test-suite provides MC/DC coverage of the source code.
The MC/DC coverage criterion has been chosen as the coverage criterion for
the highest safety level software because it is sensitive to the complexity of the
decision structure [11]. Compared to even stronger criteria like multiple condi-
tion coverage (MCC), that requires every possible combination of all conditions,
MC/DC may be satisfied with only n + 1 test cases for a decision with n con-
ditions [12,10]. In addition, MC/DC coverage criterion is suggested as a good
candidate for model-based development (MBD) using tools such as Simulink and
SCADE [6]. Therefore, our model coverage analysis is based on MC/DC as a
coverage criterion subsuming the other coverage criteria. The following MC/DC
coverage definition is based on DO-178C [18]:

Definition 4 (Modified condition/decision coverage). A program is
MC/DC covered and satisfies the MD/DC criterion if the following holds:

– every point of entry and exit in the program has been invoked at least once,
– every condition in a decision in the program has taken all possible outcomes

at least once,
– every decision in the program has taken all possible outcomes at least once,
– each condition in a decision has shown to independently affect that decision’s

outcome by: (1) varying just that condition while holding fixed all other possi-
ble conditions, or (2) varying just that condition while holding fixed all other
possible conditions that could affect the outcome.

To demonstrate MC/DC, a structural coverage analysis tool should moni-
tor statements, entry and exit points, decision and branching statements, and
Boolean conditions [12]. However, the first item in the definition of MC/DC, is
traditionally added to all control-flow criteria and is not directly connected with
the main point of MC/DC [24]. The most challenging and most discussed part is
showing the independent effect. Therefore in our analysis, we are interesting in
evaluation of expressions by checking the independence effect of each condition.

Example 1. Consider the decision D = (a ∧ b) ∨ c. The truth table representing
all eight possible test cases (combinations) for MCC is given in Table 1a. In the
table, the MC/DC column lists conditions (here a,b, and c) together with a pair
of test cases that demonstrate the independence effect of the particular condition.
For an example, the MC/DC pair c(1, 2) specifies that from test case 1 and 2
we can observe that changing the truth value of c while keeping the values of a
and b, we can affect the outcome of the decision. Comparing MCC to MC/DC
in terms of the number of test cases, there are seven possible MC/DC test cases
(test cases 1 through 7) that are part of an MC/DC pair, where condition c is
represented by 3 pairs of test cases showing the independence effect of condition

6 F. Ahishakiye et al.

TC a b c D MC/DC pairs
1 0 0 0 0
2 0 0 1 1 c(1,2)
3 0 1 0 0
4 0 1 1 1 c(3,4)
5 1 0 0 0
6 1 0 1 1 c(5,6)
7 1 1 0 1 a(3,7), b(5,7)
8 1 1 1 1

(a) MCC test cases

TC a b c D MC/DC pairs
1 0 ? 0 0
2 1 1 ? 1 a(1,2)
3 1 0 0 0 b(2,3)
4 0 ? 1 1 c(1,4)

(b) MC/DC test cases

Table 1: MCC and MC/DC test cases for decision D = (a ∧ b) ∨ c

c, and one pair of test cases for conditions a and b. However, all seven test cases
provided in Table 1a are not necessary to ensure MC/DC coverage. Only four
test cases (1,2,3, and 4), i.e., n+1 test cases for a decision with three conditions
are required to achieve MC/DC coverage as shown in Table 1b.

By showing the independent effect of each condition, MC/DC demonstrates that
each condition of the decision has a defined purpose. The most challenging and
most discussed part in the definition of MC/DC is showing this independent
effect: item (2) in the definition has been introduced in the DO-178C to clarify
that so-called Masked MC/DC is allowed [3,17]. Masked MC/DC means that it
is sufficient to show the independent effect of a condition by holding fixed only
those conditions that could actually influence the outcome. This is important
for programming languages that use short-circuit evaluation, because certain
executions of decisions are not distinguishable, if the outcome of the decision is
determined before every condition has been evaluated.

3 Instrumentation of CPN models

In this section, we describe our instrumentation approach on an example CPN
model, and highlight the salient features of our coverage analysis library. Our
overall goal is that through simulation or state space exploration, we (partially)
fill a truth-table for each decision in the net inscriptions of the CPN model.
Then, for each of these tables, and hence the decisions they are attached to, we
determine whether the model executions that we have seen so far satisfy the
MC/DC coverage criteria. If MC/DC is not satisfied, either further simulations
are necessary, or if the state space is exhausted, developers need to consider the
reason for this short-coming, which may be related to insufficient exploration
as per a limited set of initial markings considered, or a conceptual problem in
that certain conditions indeed cannot contribute to the overall outcome of the
decision.

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 7

3.1 MC/DC coverage for CPN models

MC/DC coverage (or any other type of coverage) is commonly used with ex-
ecutable programs: which decisions and conditions were evaluated by the test
cases, and with which result. Specifically, these are decisions from to the source
code of the system (application) under test. Of course, a compiler may introduce
additional conditionals into the code during code generation, but these are not
of concern.

CPN Tools already reports a primitive type of coverage as part of simula-
tion (the transition and transition bindings that have been executed) and the
state space exploration (transitions that have never occurred). These can be
interpreted as variants of state- and branch coverage.

Hence, we first need to address what we want MC/DC coverage to mean in
the context of CPN models. If we first consider guard expressions on transitions,
then we have two interesting questions related to coverage: if there is a guard,
we know from the state space (or simulation) report whether the transition
has occurred, and hence whether the guard expression has evaluated to true.
However, we do not know if during the calculation of enabling by CPN Tools it
ever has been false. If the guard had never evaluated to false, this may indicate
a problem in the model or the requirements it came from, since apparently that
guard was not actually necessary. Furthermore, if a decision in a guard is a
complex expression, then as per MC/DC, we would like to see evidence that
each condition contributed to the outcome. Neither case can be deduced from
the state space exploration or via the CTL model checker of CPN Tools as the
executions only contain transition bindings that have occurred, and hence cases
where the guard has evaluated to true.

3.2 Instrumentation of Net Inscriptions

In the following, we describe how we instrument the guards on transitions such
that coverage data can be obtained. Arc expressions are handled analogously.
Guards in a CPN model are written following the general form of a comma-
separated list of boolean expressions (decisions):

[bExp0, . . . , bExpn]

A special case is the expression

var = exp

which may have two effects: if the variable var is bound already via a pattern in
another expression (arc or guard) of the transition, then this is indeed a boolean
equality test (decision). If, however, var is not bound via other expressions,
then this essentially assigns the value of exp to the variable var and does not
contribute to any guarding effect.

We consider general boolean expressions which may make use of the full
feature set of the SML language for expressions, most importantly boolean binary

8 F. Ahishakiye et al.

operations, negation, conditional expressions with if-then-else and function calls.
Simplified, we handle:

〈bExp〉 ::= not 〈bExp〉 | 〈var〉 | f 〈exp〉0 . . . 〈exp〉n
| 〈bExp〉 andalso 〈bExp〉 | 〈bExp〉 orelse 〈bExp〉
| if 〈bExp〉 then 〈bExp〉 else 〈bExp〉
| let . . . in 〈bExp〉 end

Function symbols f cover user-defined functions as well as (built-in) rela-
tional operators such as <,=; we do not detail the overall nature of arbitrary
expressions, but refer the reader to [23] for a comprehensive discussion.

State space exploration or simulation of the CPN model is not in itself suffi-
cient to determine the outcome of the overall expression and its subexpressions:
guards are not explicitly represented, and we only have the event of taking the
transition in the state space, but no value of the guard expressions. Hence, we
need to rely on side-effects during model execution to record the intermediate
results. Our key idea is to transform every subexpression and the overall decision
into a form which will use SML’s file input/output to emit a log-entry that we
can later collect and analyse. Alternatively, we could have implemented MC/DC
coverage analysis in SML, but we chose to reuse an analysis in Python that is
more accessible to other potential users.

For the necessary instrumentation which can be viewed as a transformation
of guard and arc expressions, we essentially create an interpreter for boolean
expressions: when guards are checked (in a deterministic order due to SML’s
semantics from left to right), we traverse a term representation of the boolean
expression and output the intermediate results. Correspondingly, we design a
data type (see Listing 1.2) that can capture the above constructs, and define an
evaluation function (see Listing 1.3) on it. As we later need to pinpoint where
in a model a problem with coverage occurred, for overall expressions EXPR and
atomic proposition AP we additionally introduce a component of type string that
allows this identification.

Listing 1.2: Expressions
datatype condition =

AND of condition * condition
| OR of condition * condition
| NOT of condition
| ITE of condition * condition

* condition
| AP of string * bool;

Listing 1.3: Evaluation function
fun eval (AP (cond,v))=([(cond, SOME v)],v)
| eval (OR (a,b)) = let

val (ares,a’) = eval a;
val (bres,b’) = eval b;

in
(ares^^bres, a’ orelse b’)
end
...

fun EXPR (name,expr) : bool = [...]

The evaluation function eval collects the result of intermediate evaluations
in a list data structure, and the EXPR function (implementation not shown)
turns this result into a single boolean value that is used in the guard, and as a
side-effect outputs the truth outcome for individual conditions.

As an example, if we consider a guard:

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 9

a > 0 andalso (b orelse (c = 42))

then we can transform this guard in a straight forward manner into

EXPR("Gid", AND(AP("1", a>0), OR(AP("2",b), AP("3", c=42))))

It is important to notice that this does not give us the (symbolic) boolean
expressions, as we still leave it to the standard SML semantics to evaluate the
a>0, while abstractly we refer to the AP as a condition named “1”. In the following
we also elide expression- and proposition names for clarity in the text when not
needed.

Figure 1 shows a module from one of our example models [19] before and
after instrumentation. The guard expressions for the transitions named Send
CONNECT and Receive CONNACK have been instrumented. As the EXPR func-
tion contains input/output statements, we now as a side-effect observe inter-
mediate results of conditions every time a guard is evaluated during execution
of the CPN model. Note that the CONNECT module is one of several modules
of the MQTT protocol model, and the arc and guard expressions in the other
modules were transformed in a similar manner. Even though we have done the
instrumentation by hand, it could be automated based on the .cpn XML file of
CPN Tools in combination with an SML parser.

CtoB Out

BrokerxMessages

Clients

In/Out

ClientxState

BtoC

In

ClientxMessages

Send
CONNECT

[(isClientState (cs,READY) orelse (isClientState(cs, DISC))),
nLR outmsgs]

Receive
CONNACK

[isClientState (cs,WAIT),
 hasCONNACK (cs,inmsgs)]

sendMsg outmsgs (cs,CONNECT)

setClientState (cs,WAIT)
cs

outmsgs

inmsgs

setClientState (cs,CON)cs

recvMsg(cs,inmsgs)

Out

In/Out

In

1

1`[]

1

1`[(client(1),[]),(client(2),[])]

(a) Original model

CtoB
Out

BrokerxMessages

Clients

In/Out

ClientxState

BtoC

In
ClientxMessages

Send
CONNECT

[EXPR("Sc", AND(OR(AP("1",isClientState (cs,READY)),
(AP("2", isClientState(cs, DISC)))), AP("3",nLR outmsgs)))]

Receive
CONNACK

[EXPR("Rc",AND(AP("1",(isClientState (cs,WAIT))),
AP("2",(hasCONNACK (cs,inmsgs)))))]

sendMsg outmsgs (cs,CONNECT)

setClientState (cs,WAIT)

cs

outmsgs

inmsgs

setClientState (cs,CON)
cs

recvMsg(cs,inmsgs) In

In/Out

Out

1

1`[]

1

1`[(client(1),[]),(client(2),[])]

(b) Instrumented model

Fig. 1: MQTT [19]: guards before and after instrumentation

10 F. Ahishakiye et al.

3.3 Emitting Coverage Data

We can likewise apply the transformation to boolean expression in arc expres-
sions:

any boolean expression is transformed into an EXPR(. . .(AP bExp). . .), re-
sulting for example in the transformation of

if bexp1 orelse bexp2 then e1 else e2

into
if EXPR(OR(AP bexp1, AP bexp2)) then e1 else e2.

Figure 2 illustrates such a transformed arc expressions for a module of the Paxos
protocol which we also use in our evaluation.

Timeout
FD

Out

To
Phase
Two

Out
Message

FD
Control

INT

fd_phaseone

Process
 Promise
Message

if success orelse (cnt = 0)
then 1`(Promise(cid, crnd,(vrnd,vvalue))) else empty

if success orelse (cnt = 0)
then empty else 1`()

cnt

if success orelse cnt = 0
then cnt
else cnt-1

Timeout
FD

Out

To
Phase
Two

Out

Message

FD
Control

INT

fd_phaseone

Process
 Promise
Message

if EXPR("Arc14P1" , OR(AP("1", success), AP("2", cnt = 0)))
then 1`(Promise(cid, crnd,(vrnd,vvalue))) else empty

if EXPR("Arc13P1" , OR(AP("1", success),
AP("2", cnt = 0)))
then empty else 1`()

cnt if EXPR("Arc12P1" , OR(AP("1", success), AP("2", cnt = 0)))
then cnt else cnt-1

Fig. 2: Paxos [26]: Arc expression before (left) and after instrumentation (right)

Although the observation of conditions would also happen when e.g. using
simulation, we rather envisage that this feature is used with state space explo-
ration whenever applicable which in general will evaluate every guard multi-
ple times with varying bindings. The execution of the CPN model is triggered
through the standard user interface of CPN Tools.

In the scenarios anticipated here in this paper, we assume any subexpres-
sions are total and do not crash when evaluated, which would abort the model
execution and lead to partial results (up to the crash). In contrast to SML’s
orelse, this also means e.g. for the OR-construct that we always evaluate both
arguments, even though CPN Tools would make use of short-circuit evaluation.
We see the advantage in computing as many outcomes as possible instead of
leaving gaps in the truth-tables, as this will give us more precise information to
work with when checking the MC/DC criteria.

4 Post Processing of Coverage Data

We now discuss the coverage analysis which is performed via post-processing of
the coverage data recorded through the instrumentation. We did not implement

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 11

the MC/DC coverage analysis in SML directly. Rather, we feed individual obser-
vations about decision outcomes and their constituent conditions into a Python
tool that computes the coverage results. This allows us to reuse the backend in
other situations, without being SML or CPN specific.

4.1 Coverage Analysis

The general format from the instrumentation step is a sequence of colon-delimited
rows, where each triple in a row captures a single decision with the truth values
of all conditions in a fixed order and the outcome. As an example, see Script 4.1.
The name (stemming from the first argument to an EXPR above) is configurable
and should be unique in the model; we recommend to derive the name from the
element (guard or arc) the expression is attached to. This makes it easy to later
trace coverage results for this name back to the element in the model, and for
the user to navigate to the sub-module containing the element should they desire
to do so.

Script 4.1: Log decisions

...
a3:01:0
t42:01110:0
t42:01011:1
...

Script 4.2: Decisions evaluation table
...
Returna19
0001 0
0010 0
0101 0
0110 0
1001 1
1101 1
1110 1
...

MCDC covered? False

R{1:[(0001, 1001), (0101, 1101), (0110,

1110)], 2:[], 3:[], 4:[]}

Script 4.1 shows that the decision “t42” was triggered twice, possibly on a
guard which did not enable the transition (result column indicating false), after
which the exploration choose different transition bindings which resulted in a
changed outcome to the 3rd and 5th condition in this decision and an overall
outcome of true.

We chose to print the binary representation instead of, e.g., a slightly shorter
integer value to facilitate casual reading of the trace. Also, this allows us to en-
force the correct number of bits that we expect per observation, corresponding to
the number of conditions in the decision, which mitigates against instrumentation-
or naming-mistakes.

Our Python tool parses the log file and calculates coverage information. It
prints the percentage of decisions that are MC/DC and branch covered in tex-
tual mode and in GNU Plot syntax (see Figures 4 later). The output contains
individual reports in the form of the truth tables for each decision, which sum-
marizes the conditions that are fired during the execution of the CPN model,

12 F. Ahishakiye et al.

and sets of pairs of test cases per condition that show the independence effect
of that condition.

In the case that the decision is not MC/DC covered, the information pro-
vided by the Python script helps to infer the remaining valuations of the truth
tables that should be evaluated in order to fulfill this criteria. In the example
in Script 4.2, the first condition (left-most column in the table) has multiple
complementary entries where the expression only varies in one bit (e.g., rows
0001 and 1001) and the output changes (0 to 1). The R set shows three such
pairs for condition 1, but no complementary entries at all are found in the truth
table for conditions 2, 3 and 4, and hence indicated as empty sets [] by Python.
This information can then be used by developers to drill down into parts of their
model, e.g. through simulation, that have not been covered adequately yet.

4.2 Combining Coverage Data from Multiple Runs

Coverage- or testing frameworks rely on their correct use by the operator, only a
sub-class of tools such as fuzzers are completely automated. Our library is “drag-
and-drop” in the sense that the user only imports it, and invokes the central
mcdcgen() function, in line with how state space exploration works in CPN
Tools. This function only explores the state space for the current configuration
as determined by the initial markings. Compared to regular testing of software,
this corresponds to providing a single input to the system under test.

It is straightforward to capture executions of multiple runs: our API supports
passing initialisation functions that reconfigure the net between subsequent runs.
However, as there is no standardised way of configuring alternative initial mark-
ings or configurations in CPN Tools, the user has to actively make use of this
API. In the default configuration, only the immediate net given in the model is
evaluated.

Listing 1.4: MC/DC tool invocation
use (cpnmcdclibpath^"config/simrun.sml");

(* Invocation with default settings (no timeout) *)
mcdcgen("path/to/mqtt.log");

(* Invocation without timeout; base model + 2 configurations *)
mcdcgenConfig(0, applyConfig,[co1,co2],"path/to/mqtt3.log");

As an example, we show in Listing 1.4 how we make use of this feature in
the MQTT-model, where alternative configurations were easily discoverable for
us: the signature of MC/DC-generation with a simple test-driver is

mcdcgenConfig = fn : int*(’a→’b)*’a list*string→unit,

where the first argument is a timeout for the state space exploration, the second
is a function with side-effects that manipulates the global configurations that
are commonly used in CPN Tools to parameterise models, the next argument is

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 13

a list of different configurations, followed by the filename for writing results to.
This function will always first evaluate the initial model configuration, and then
have additional runs for every configuration. Internally, it calls into CPN Tools’
CalculateOccGraph() function for the actual state space exploration.

Hence the first mcdcgen-invocation in Listing 1.4 will execute a full state
space exploration without timeout, whereas the second invocation would produce
three subsequent runs logged into the same file, again without a default timeout.
The test-driver can easily be adapted to different scenarios or different ways of
reconfiguring a model. Alternatively, traces can also be produced in separate
files that are then simply concatenated for the coverage analysis.

5 Evaluation on Example Models

In this section, we provide experimental results from an evaluation of our ap-
proach to model coverage for CPNs. We present the results of examining four
non-trivial models from the literature that are freely available as part of sci-
entific publications: a model of the Paxos distributed-consensus algorithm [26],
a model of the MQTT publish-subscribe protocol [19], a model for distributed
constraint satisfaction problem (DisCSP) algorithms [15], and a complex model
of the runtime environment of an actor-based model [5] (CPNABS). All mod-
els come with initial markings that allow state space generation, in the case of
MQTT and DisCSP finite, and infinite—and hence possibly partial—in the case
of Paxos and CPNABS.

5.1 Experimental Setup

Figure 3 gives an overview of our experimental setup. Initially, we have the
original CPN model under test. The first step is to instrument the model by
transforming each guard and arc expression into a form that as a side-effect
prints how conditions were evaluated and the overall outcome of the decision (cf.
Section 3). In the second step, we run the state space exploration (SSE) on the
instrumented model and then reconfigure the configuration (initial marking). As
the side effect of SSE, we run the MC/DC generation which gives as output a log
file containing the information of evaluations of conditions in arcs expressions and
guards and the decision outcome. The final step is to run the MC/DC analyser
which is a post-processing tool that determines whether each decision is MC/DC-
covered or not. The MC/DC analyser is implemented as a Python script that
checks the independence effect of each condition on the decision outcome based
on the input log file and outputs the MC/DC coverage results. In addition, it
reports the branch coverage (BC), by checking if each of the possible branches
in each decision has been taken at least once.

5.2 Experimental Results

Table 2 presents the experimental results for the four example models [5,19,26,15].
The CPN model under test contains Boolean expressions in arcs and guards, and

14 F. Ahishakiye et al.

CPN Model

Under Test Instrumented

 CPN Model

Instrumentation

SSE

MC/DC &
BC Trace

Analysis

R
ec

on
fi

gu
ra

ti
on

Coverage report

Fig. 3: Experimental setup

the total number of expressions (both guard and arc expressions) is denoted by
m. For each model, we consider the number of executed decisions (second col-
umn) in arcs and guards. Column Model decisions (m) refers to the number of
decisions that have been instrumented in the model. The number of decisions
observed in the model and in the log-file may deviate in case some of decisions
are never executed in which case they will not appear in the log file. We indicate
in brackets if during our exploration we did not visit, and hence log, each deci-
sion at least once; in the case of DisCSP, there are two guards decisions which
never executed. Since the main concern of MC/DC is the independence effect
of the individual conditions on the decision outcome, non-trivial decisions, i.e.,
decisions with more than one condition are the interesting once. In fact, if a
decision has only one condition, it is not possible to differentiate MC/DC from
DC. The column Non-trivial decisions gives the number of the decisions (out of
m) that have at least two conditions in the model.

Table 2: MC/DC coverage results for example CPN models
CPN
Model

Executed
decisions

Model
decisions (m)

Non-trivial
decisions

MC/DC
(%)

BC
(%)

State
space

Paxos 2,281,466 27 11 37.03 40.74 infinite
MQTT 3,870 18 14 11.11 22.22 finite
CPNABS 3,716,896 32 13 59.37 84.37 infinite
DisCSP 233,819 12 (10) 5 45.45 45.45 finite

Some of the models under test, for instance the MQTT-protocol, have alter-
native configurations contained in the model which can yield different coverage
results with respect to which set of other global parameters. We record both

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 15

MC/DC and BC as the ratio of covered decisions over the total number of deci-
sions.

For the models with an infinite state space (the CPNABS and Paxos models),
we aborted the state space exploration after two days at which point the number
of arcs and guards expression executed no longer seemed to increase the coverage
metrics.

5.3 Discussion of Results

MC/DC is covered if all the conditions in the decision are tested once true and
once false with the independence effect on the outcome. BC is covered if all
the branches are taken at least once. This makes MC/DC a stronger coverage
criterion compared to BC. Figure 4 shows the graphical representation of our
resulting coverage metrics as the percentage of covered decision with respect to
the number of executed decisions in guard and arcs for both MC/DC and BC.
The plots show that the covered decisions increase as the model (and hence the
decisions) are being executed. Note that the x-axis does not directly represent
execution time of the model: the state space explorer already prunes states that
have been already visited (which takes time), and hence as the state space explo-
ration progress the number of expressions evaluated per time unit will decrease.
For all the models, BC is higher compared to MC/DC, which complies with
their definitions and criteria. In case the expression was executed with the same
outcome, the coverage results do not increase, since those test cases have already
been explored. For the DisCSP algorithms, we tested one of the presented mod-
els, DisCSP weak-commitment search (WCS), since it is considered as the prime
algorithm. Two factors affect the coverage percentage results presented for these
models:

1. The tested models had no clear test suites, they might be lacking test cases
to cover the remaining conditions. Depending on the purpose of each model,
some of the test cases may not be relevant for the model or the model may
not even have been intended for testing. This could be solved by guiding the
SSE for test cases generation for the uncovered decision (see discussion of
future work).

2. The models might be erroneous in the sense that some parts (conditions) in
the model are never or only partially executed. For example in the DisCSP
model, there are two decisions which never appear in the logs, because they
were never executed, and we cannot tell if this was intentionally or not.

A main results of our analysis of the example models is, however, that none
of the models (including those for which the state space could be explored)
have full MC/DC coverage. This confirms our hypothesis that code coverage of
net inscriptions of CPN models adds value to the analysis. A full state space
exploration represents the current limit of capabilities that CPN Tools has to
exercise (test) a CPN model. Our results shows that even in presence of full state
space exploration, we may still find expressions that are not MC/DC covered.

16 F. Ahishakiye et al.

From the perspective of the present paper, it confirms the relevance and added
value of performing coverage analysis net inscriptions of CPN models. A natural
next step in a model development process would be to revisit the decisions that
are not MC/DC covered and understand the underlying reason. Since the scope
of this paper is limited to the coverage analysis, test cases case generation and
fault finding in these models will be addressed in future work.

(a) CPN ABS model (b) Paxos model

(c) MQTT model (d) DisCSP WCS model

Fig. 4: MC/DC and BC coverage versus number of executed decisions

6 Related Work

Coverage analysis has attracted attention in both academic and industrial re-
search, especially the MC/DC criterion is highly recommended and commonly
used in safety critical systems, including as avionic systems [17]. However, there is
a limited number of research addressing model-based coverage analysis. Ghosh [22]
expresses test adequacy criteria in terms of model coverage and explicitly lists

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 17

condition coverage and full predicate coverage criterion for OCL predicates on
UML interaction diagrams, which are semantically related to CPNs in that they
express (possible) interactions. Test cases were not automatically generated. In
[28,27], the authors present an automated test generation technique, MISTA
(Model-based Integration and System Test Automation) for integrated func-
tional and security testing of software systems using high-level Petri nets as
finite state test models.

Chilenski [10], investigated three forms of MC/DC including Unique-Cause
(UC) MC/DC, Unique-Cause + Masking MC/DC, and Masking MC/DC. More-
over, other forms of MC/DC has been discussed in [16], where a systematic liter-
ature review on MC/DC was conducted. More than 70 papers were reviewed and
54 of them discussed MC/DC definitions and the remaining are only focusing on
the use of MC/DC in fault detection. We presented in [1], a tool that measures
MC/DC based on traces of C programs without instrumentation. However, there
is a limited number of studies on model coverage analysis based on MC/DC, and
to the best of our knowledge, none has been conducted on MC/DC analysis of
CPNs models.

Simulink [13,20] supports recording and visualising various coverage criteria
including MC/DC from simulations via the Simulink Design Verifier. It also has
two options for creating test cases to account for the missing coverage in the
design: either creating the test cases manually, or generating them automati-
cally using the Simulink Design Verifier. Heimdahl and George [7] performed an
experiment using an example of a Flight Guidance System (FGS) mode-logic
model to generate and reduce a test-suite reduction for a variety of structural
coverage criteria focusing on effects on test quality and implications for test-
ing. However, their findings had obvious threats to the external validity that
prevents them from generalising their observations. Test coverage criteria for
autonomous mobile systems based on CPNs was presented by Lill et al. in [14].
Their model-based testing approach is based on the use of CPNs to provide a
compact and scalable representation of behavioural multiplicity to be covered
by an appropriate selection of representative test scenarios fulfilling net-based
coverage criteria. Simão et al. [21] provide definitions of structural coverage cri-
teria family for CPNs, named CPN Coverage Criteria Family. These coverage
criteria are based on checking if all-markings, all-transitions, all-bindings, and
all-paths are tested at least once. Our work is different from the above presented
work in that we are analysing the coverage of net inscriptions (conditionals in
SML decisions) in CPN models based on structure coverage criteria defined by
certification standards, such as DO-178C [18].

7 Summary and Outlook

We have presented a new approach and a supporting software tool to measure
MC/DC and branch coverage (BC) of SML decisions in CPN models. There
are three main contribution of this paper: 1) We provide a library and annota-
tion mechanism that intercepts evaluation of Boolean conditions in guards and

18 F. Ahishakiye et al.

arcs in SML decisions in CPN models, and record how they were evaluated; 2)
we present a post-processing tool that computes the conditions truth assign-
ment and checks whether or not particular decisions are MC/DC-covered in the
considered executions of the model; 3) we collect coverage data from publicly
available CPN models and report whether they are MC/DC and BC covered.

Our experimental results show that, our library and post-processing tool can
find how conditions were evaluated in all the net inscriptions in CPN models and
measure MC/DC and BC. Results reveal that the MC/DC coverage percentage
is quiet low for all the four CPN models tested. This is interesting because
it indicates that developers may have had different goals when they designed
model, and that the model only reflects a single starting configuration. We can
compare this with the coverage of regular software: running a program will yield
some coverage data, yet most programs will have to be run with many different
inputs to achieve adequate coverage.

To the best of our knowledge, this is the first work on coverage analysis
of CPN models based on BC and MC/DC criteria. This work highlighted that
coverage analysis is interesting and useful for CPN models, not only in the
context of showing the covered guard and arcs SML decisions, but also the effect
of conditionals in SML decisions on the model outcome and related potential
problems.

Outlook

Our general approach to coverage analysis presents several directions forward
which would help developers get a better understanding of their models: firstly,
while generating the full state space is certainly the preferred approach, this is
not feasible if the state space is inherently infinite or too large. Simulation of
particular executions could then be guided by results from the coverage and try
to achieve higher coverage in parts of the model that have not been explored
yet. However, while selecting particular transitions to follow in a simulation is
straight-forward, manipulating the data space for bindings used in guards is a
much harder problem and closely related to test case generation (recall the CPNs
also rely on suitable initial states, which are currently given by developers).
Making use of feedback between the state of the simulation and the state of
the coverage would, however, require much tighter integration of the tools. A
related direction is to consider visualising coverage information in the graphical
user interface: CPN Tools already supports a broad palette of visual options that
could be used, e.g., to indicate successful coverage of guards through colour, or
the frequency that transitions have been taken through their thickness [25].

As for the measured coverage results, it would be interesting to discuss with
the original developers of the models if the coverage is within their expectations.
While on the one hand low coverage could indicate design flaws, on the other
hand our testing may not have exercised the same state space as the original
developers did: they may have used their model in various configurations, whereof
the state of the git repository just represents a snapshot, or we did not discover

Coverage Analysis of Net Inscriptions in Coloured Petri Net Models 19

all possible configurations in the model. In the future, we may also try to generate
test-cases specifically with the aim to increase coverage.

References

1. Ahishakiye, F., Jakšić, S., Stolz, V., Lange, F.D., Schmitz, M., Thoma, D.: Non-
intrusive MC/DC measurement based on traces. In: Proc. of Interl. Symp. on
Theoretical Aspects of Software Engineering (TASE). pp. 86–92. IEEE, Guilin,
China (2019)

2. Beaudouin-Lafon, M., Mackay, W.E., Jensen, M., Andersen, P., Janecek, P.,
Lassen, M., Lund, K., Mortensen, K., Munck, S., Ratzer, A., Ravn, K., Chris-
tensen, S., Jensen, K.: CPN/Tools: A Tool for Editing and Simulating Coloured
Petri Nets ETAPS Tool Demonstration Related to TACAS. In: Proc. of Tools and
Algorithms for the Construction and Analysis of Systems. pp. 574–577. Springer,
Berlin, Heidelberg (2001)

3. Certification Authorities Software Team (CAST): Rationale for Accepting Mask-
ing MC/DC in Certification Projects. Tech. rep., Position Paper CAST-6
(2001), https://www.faa.gov/aircraft/air_cert/design_approvals/
air_software/cast/cast_papers/media/cast-6.pdf

4. Cornett, S.: Code Coverage Analysis (1996-2014), available at https://www.
bullseye.com/coverage.html, Accessed 13 March 2020

5. Gkolfi, A., Din, C.C., Johnsen, E.B., Kristensen, L.M., Steffen, M., Yu, I.C.: Trans-
lating active objects into colored Petri nets for communication analysis. Science of
Computer Programming 181, 1–26 (2019)

6. Heimdahl, M.P.E., Whalen, M.W., Rajan, A., Staats, M.: On MC/DC and imple-
mentation structure: An empirical study. In: Proc. of IEEE/AIAA 27th Digital
Avionics Systems Conference. pp. 5.B.3–1–5.B.3–13 (2008)

7. Heimdahl, M.P.E., George, D.: Test-Suite Reduction for Model Based Tests: Ef-
fects on Test Quality and Implications for Testing. In: Proc. of the 19th IEEE
International Conference on Automated Software Engineering. p. 176–185. ASE
’04, IEEE Computer Society, USA (2004)

8. Jensen, K., Christensen, S., Kristensen, L.M., Michael, W.: CPN Tools (2010),
http://cpntools.org/

9. Jensen, K., Kristensen, L.M.: Colored Petri Nets: A graphical language for formal
modeling and validation of concurrent systems. Commun. ACM 58, 61–70 (2015)

10. John J., C.: An investigation of three forms of the modified condition deci-
sion coverage (MC/DC) criterion. Tech. rep., Office of Aviation Research (2001),
https://apps.dtic.mil/dtic/tr/fulltext/u2/a392004.pdf

11. John J., C., Steven P., M.: Applicability of Modified Condition/Decision Coverage
to software testing. Software Engineering Journal 9(5), 193–200 (1994)

12. Kelly J., H., Dan S., V., John J., C., Leanna K., R.: A Practical Tutorial on Mod-
ified Condition/Decision Coverage. Tech. Rep. NASA/TM-2001-210876, NASA
Langley Server (2001), https://dl.acm.org/doi/book/10.5555/886632

13. Kumar, U., Vasi, N.: Validating Design Requirements Using Model Cover-
age, https://se.mathworks.com/company/newsletters/articles/
validating-design-requirements-using-model-coverage.html,
accessed 06 March 2020

14. Lill, R., Saglietti, F.: Test coverage criteria for autonomous mobile systems based
on Coloured Petri Nets. In: Proc. of 9th FORMS/FORMAT 2012 - Symp. on

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-6.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-6.pdf
https://www.bullseye.com/coverage.html
https://www.bullseye.com/coverage.html
http://cpntools.org/
https://apps.dtic.mil/dtic/tr/fulltext/u2/a392004.pdf
https://dl.acm.org/doi/book/10.5555/886632
https://se.mathworks.com/company/newsletters/articles/validating-design-requirements-using-model-coverage.html
https://se.mathworks.com/company/newsletters/articles/validating-design-requirements-using-model-coverage.html

20 F. Ahishakiye et al.

Formal Methods for Automation and Safety in Railway and Automotive Systems.
pp. 155–162. TU, Braunschweig, Germany (2012), http://www11.cs.fau.de/
Forschung/Publikationen/FORMS12.pdf

15. Pascal, C., Panescu, D.: A Colored Petri Net model for DisCSP algorithms. Con-
curr. Comput. Pract. Exp. 29(18), 1–23 (2017)

16. Paul, T.K., Lau, M.F.: A systematic literature review on modified condition and
decision coverage. In: Proc. of the 29th Annual ACM Symp. on Applied Computing.
p. 1301–1308. SAC ’14, Association for Computing Machinery (2014)

17. Pothon, F.: DO-178C/ED-12C versus DO-178B/ED-12B: Changes and Im-
provements. Tech. rep., AdaCore (2012), https://www.adacore.com/books/
do-178c-vs-do-178b

18. Rierson, L.: Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. CRC Press (2013)

19. Rodríguez, A., Kristensen, L.M., Rutle, A.: Formal Modelling and Incremental
Verification of the MQTT IoT Protocol. In: Proc. of Trans. Petri Nets and Other
Models of Concurrency. Lecture Notes in Computer Science, vol. 11790, pp. 126–
145. Berlin, Heidelberg (2019)

20. Simulink: Types of Model Coverage, https://se.mathworks.com/help/
slcoverage/ug/\types-of-model-coverage.html, accessed 06 March
2020

21. Simão, A., Do, S., Souza, S., Maldonado, J.: A family of coverage testing criteria
for Coloured Petri Nets. In: Proc. of 17th Brazilian Symposium on Software Engi-
neering (SBES’2003). pp. 209–224 (2003), https://pdfs.semanticscholar.
org/ed25/e04a93a93da99350a5d0fdb36884ccca6713.pdf

22. Sudipto Ghosh, France, R., Braganza, C., Nilesh Kawane, Andrews, A., Orest
Pilskalns: Test adequacy assessment for UML design model testing. In: Proc. of
14th Intl. Symp. on Software Reliability Engineering, ISSRE’03. pp. 332–343 (2003)

23. Tofte, M.: Standard ML language. Scholarpedia 4(2), 7515 (2009)
24. Vilkomir, S., Bowen, J.: Reinforced condition/decision coverage (RC/DC): A new

criterion for software testing. In: Proc. of ZB 2002:Formal Specification and De-
velopment in Z and B. Lecture Notes in Computer Science, vol. 2272, pp. 291–308.
Berlin, Heidelberg (2002)

25. Wang, R., Artho, C., Kristensen, L.M., Stolz, V.: Visualization and abstractions for
execution paths in model-based software testing. In: Ahrendt, W., Tarifa, S.L.T.
(eds.) Proc. of Integrated Formal Methods - 15th International Conference (IFM
2019). Lecture Notes in Computer Science, vol. 11918, pp. 474–492 (2019)

26. Wang, R., Kristensen, L.M., Meling, H., Stolz, V.: Automated test case generation
for the Paxos single-decree protocol using a Coloured Petri Net model. J. Logical
and Algebraic Methods in Programming 104, 254–273 (2019)

27. Xu, D., Xu, W., Kent, M., Thomas, L., Wang, L.: An automated test generation
technique for software quality assurance. IEEE Transactions on Reliability 64(1),
247–268 (2015)

28. Xu, D.: A tool for automated test code generation from high-level petri nets. In:
Proc. of Applications and Theory of Petri Nets. Lecture Notes in Computer Science,
vol. 6709, pp. 308–317. Berlin, Heidelberg (2011)

29. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

http://www11.cs.fau.de/Forschung/Publikationen/FORMS12.pdf
http://www11.cs.fau.de/Forschung/Publikationen/FORMS12.pdf
https://www.adacore.com/books/do-178c-vs-do-178b
https://www.adacore.com/books/do-178c-vs-do-178b
https://se.mathworks.com/help/slcoverage/ug/\types-of-model-coverage.html
https://se.mathworks.com/help/slcoverage/ug/\types-of-model-coverage.html
https://pdfs.semanticscholar.org/ed25/e04a93a93da99350a5d0fdb36884ccca6713.pdf
https://pdfs.semanticscholar.org/ed25/e04a93a93da99350a5d0fdb36884ccca6713.pdf

	Coverage Analysis of Net Inscriptions in Coloured Petri Net Models

