Skip to main content

Towards Efficient Partial Order Techniques for Time Petri Nets

  • Conference paper
  • First Online:
Verification and Evaluation of Computer and Communication Systems (VECoS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12519))

Abstract

Time Petri nets (TPN for short) are established as a powerful formalism for modeling and verifying systems with explicit soft and hard time constraints. However, their verification techniques run against the state explosion problem that is accentuated by the fact that the diamond property is difficult to meet, even for conflict-free transitions.

To deal with this limitation, the partial order reduction (POR) techniques of Petri nets (PN for short) are used in combination with the partially ordered sets (POSETs). Nevertheless, POSETs introduce extra selection conditions that may offset the benefits of the POR techniques.

This paper establishes a subclass of TPN for which the POR techniques of PN can be used without resorting to POSETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All and only all markings and firing sequences of the TPN are represented in the state space abstraction.

  2. 2.

    A maximal firing sequence is either an infinite firable sequence or a finite firable sequence leading to a deadlock state.

  3. 3.

    Two sequences of transitions \(\omega \) and \(\omega '\) are equivalent, denoted by \(\omega \equiv \omega '\) iff they are identical or each one can be obtained from the other by a series of permutations of transitions.

  4. 4.

    \(LTL_{\{-X\}}\) is the classical linear temporal logic without the next-state operator X.

  5. 5.

    The effect of a transition is the set of transitions disabled plus those newly enabled by its firing.

  6. 6.

    All possible firing orders of the firable instances of the same transition are considered.

  7. 7.

    A triangular atomic constraint is of the form \(x-y\prec c\), where x, y are real valued variables, c is a rational constant and \(\prec \in \{<,>,\le , \ge , =\}\).

  8. 8.

    The effect of a transition t is the set of transitions disabled plus those newly enabled by firing t.

  9. 9.

    A selective search w.r.t. D0, D1w and \(D2'\), from the initial state class of \(\mathcal {N}\), is a partial state space exploration, where the set of transitions selected to be fired, from the initial state class and each computed state class, satisfies D0, D1w and \(D2'\).

  10. 10.

    A free-choice TPN is a safe TPN such that \(\forall t\in T, \forall t' \in CFS(t), pre(t) = pre(t') \wedge {\uparrow Is(t)}= {\uparrow Is(t')}\).

  11. 11.

    A weighted comparable preset TPN is a safe TPN such that \(\forall t\in T, \forall t_j \in CFS(t_i), pre(t_i) \le pre(t_j) \vee pre(t_j) \le pre(t_i))\).

References

  1. Belluomini, W., Myers, C.J.: Timed state space exploration using POSETs. IEEE Trans. Comput. Aided Des. Integr. Circuits 19(5), 501–520 (2000)

    Article  Google Scholar 

  2. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD thesis, Dept. of Information Technology, Uppsala University (2002)

    Google Scholar 

  3. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055643

    Chapter  Google Scholar 

  4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Software Eng. 17(3), 259–273 (1991)

    Article  MathSciNet  Google Scholar 

  5. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 442–457. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_33

    Chapter  MATH  Google Scholar 

  6. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in reachability analysis of time Petri nets. ACM Trans. Embedded Comput. Syst. (TECS) 12(1), 259–273 (2013)

    Google Scholar 

  7. Boucheneb, H., Barkaoui, K.: Stubborn sets for time Petri nets. ACM Trans. Embedded Comput. Syst. (TECS) 14(1), 11:1–11:25 (2015)

    Google Scholar 

  8. Boucheneb, H., Barkaoui, K.: Delay-dependent partial order reduction technique for real time systems. Real-Time Syst. 54(2), 278–306 (2017). https://doi.org/10.1007/s11241-017-9297-0

    Article  MATH  Google Scholar 

  9. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. Logic Comput. 19(6), 1509–1540 (2009)

    Article  MathSciNet  Google Scholar 

  10. Boucheneb, H., Lime, D., Roux, O.H.: On multi-enabledness in time Petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 130–149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_8

    Chapter  MATH  Google Scholar 

  11. Boucheneb, H., Rakkay, H.: A more efficient time Petri net state space abstraction useful to model checking timed linear properties. Fundamenta Informaticae 88(4), 469–495 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Gerth, R., Kuip, R., Peled, D., Penczek, W.: A partial order approach to branching time logic model checking. Inf. Comput. 150, 132–152 (1999)

    Article  MathSciNet  Google Scholar 

  13. Godefroid, P. (ed.): Introduction. Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032, pp. 11–18. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60761-7_28

  14. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. Theoret. Comput. Sci. TCS 345(1), 27–59 (2005)

    Article  MathSciNet  Google Scholar 

  15. Mercer, E.G., Myers, C.J., Yoneda, T.: Improved POSET timing analysis in timed Petri nets. In: International Workshop on Synthesis and System Integration of Mixed Technologies, pp. 1–6 (2001)

    Google Scholar 

  16. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_34

    Chapter  Google Scholar 

  17. Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des. 1(4), 297–322 (1992)

    Article  Google Scholar 

  18. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_21

    Chapter  Google Scholar 

  19. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundam. Inform. 113(3–4), 377–397 (2011)

    Article  MathSciNet  Google Scholar 

  20. Yoneda, T., Schlingloff, B.H.: Efficient verification of parallel real-time systems. Formal Methods Syst. Des. 11(2), 187–215 (1997)

    Article  Google Scholar 

  21. Yoneda, T., Shibayama, A., Schlingloff, B.-H., Clarke, E.M.: Efficient verification of parallel real-time systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 321–332. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanifa Boucheneb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Boucheneb, H., Barkaoui, K., Li, Z. (2020). Towards Efficient Partial Order Techniques for Time Petri Nets. In: Ben Hedia, B., Chen, YF., Liu, G., Yu, Z. (eds) Verification and Evaluation of Computer and Communication Systems. VECoS 2020. Lecture Notes in Computer Science(), vol 12519. Springer, Cham. https://doi.org/10.1007/978-3-030-65955-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65955-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65954-7

  • Online ISBN: 978-3-030-65955-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics