Skip to main content

Exploiting Temporal Convolution for Activity Prediction in Process Analytics

  • Conference paper
  • First Online:
ECML PKDD 2020 Workshops (ECML PKDD 2020)

Abstract

Process Mining (PM) is meant to extract knowledge on the behavior of business processes from historical log data. Lately, an increasing attention has been gained by the Predictive Process Monitoring, a field of PM that tries to extend process monitoring systems with prediction capabilities and, in particular. Several current proposals in literature to this problem rely on Deep Neural Networks, mostly on recurrent architectures (in particular LSTM) owing to their capability to capture the inherent sequential nature of process data. Very recently, however, an alternative solution based on a convolutional architecture (CNN) has been proposed in the literature, which was shown to achieve compelling results. Inspired by this line of research, we here propose a novel convolution-based deep learning approach to the prediction of the next activity which relies on: (i) extracting high-level features (at different levels of abstraction) through the computation of time-oriented dilated convolutions over traces, and (ii) exploiting residual-like connections to make the training of the predictive model more robust and faster. Preliminary results on real-life datasets confirm the validity of our proposal, compared with an LSTM-based and a CNN-based approach in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.17632/39bp3vv62t.1.

  2. 2.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

References

  1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR abs/1803.01271 (2018)

    Google Scholar 

  2. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  3. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5

    Chapter  Google Scholar 

  4. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT (2016)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Lea, C., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks: a unified approach to action segmentation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_7

    Chapter  Google Scholar 

  9. Lin, L., Wen, L., Wang, J.: MM-PRED: a deep predictive model for multi-attribute event sequence. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 118–126. SIAM (2019)

    Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  11. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  12. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process prediction model using a deep learning method. Bus. Inf. Syst. Eng. 62(2), 143–157 (2018). https://doi.org/10.1007/s12599-018-0551-3

    Article  Google Scholar 

  13. Metzger, A., et al.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 276–290 (2015)

    Article  Google Scholar 

  14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)

    Google Scholar 

  15. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7 (2017)

    Google Scholar 

  16. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: International Conference on Process Mining (ICPM), pp. 129–136 (2019)

    Google Scholar 

  17. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016). http://arxiv.org/abs/1609.04747

  18. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  19. Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  20. Zhao, W., Gao, Y., Ji, T., Wan, X., Ye, F., Bai, G.: Deep temporal convolutional networks for short-term traffic flow forecasting. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2935504

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Folino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Folino, F., Guarascio, M., Liguori, A., Manco, G., Pontieri, L., Ritacco, E. (2020). Exploiting Temporal Convolution for Activity Prediction in Process Analytics. In: Koprinska, I., et al. ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65965-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65964-6

  • Online ISBN: 978-3-030-65965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics