Skip to main content

Data Decomposition Based Learning for Load Time-Series Forecasting

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1323))

Abstract

With the deployment of smart grid technologies and management modernization, the large amount of fine-grained electricity consumption data become readily available. So, the process of knowledge extraction from such a vast amount of data should be optimized to efficiently and reliably utilize such information for future strategies making, network optimization and power system planning. In this context, we proposed a hybrid approach that combines decomposition algorithm with deep learning model for improved accuracy and reduced complexity. The approach adds an additional novel perspective to the existing studies by selecting appropriate prediction models on the basis of decomposed components intrinsic features. Experiments are conducted on the Australian National Electricity Market (specifically, Queensland) dataset and prediction results are compared to two different state-of-the-art decomposition based hybrid approaches. The comparison results are evidence that the proposed approach outperforms other decomposition based hybrid approaches by generating 1.63% average prediction error.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Australian energy market operator. https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data/. Accessed 30 Feb 2019

  2. Adom, P.K., Bekoe, W.: Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: a comparison of ARDL and PAM. Energy 44(1), 367–380 (2012)

    Article  Google Scholar 

  3. Bakhat, M., Rosselló, J.: Estimation of tourism-induced electricity consumption: the case study of Balearics Islands, Spain. Energy Econ. 33(3), 437–444 (2011)

    Article  Google Scholar 

  4. Baliyan, A., Gaurav, K., Mishra, S.K.: A review of short term load forecasting using artificial neural network models. Procedia Comput. Sci. 48, 121–125 (2015)

    Article  Google Scholar 

  5. Barbulescu, C., Kilyeni, S., Deacu, A., Turi, G.M., Moga, M.: Artificial neural network based monthly load curves forecasting. In: 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 237–242. IEEE (2016)

    Google Scholar 

  6. Bedi, J., Toshniwal, D.: Empirical mode decomposition based deep learning for electricity demand forecasting. IEEE Access 6, 49144–49156 (2018)

    Article  Google Scholar 

  7. Bedi, J., Toshniwal, D.: Deep learning framework to forecast electricity demand. Appl. Energy 238, 1312–1326 (2019)

    Article  Google Scholar 

  8. Bhanot, S., Jalandhar, P., Mehta, S.: Long term load forecasting using k-mean clustering and ANN approach (2018)

    Google Scholar 

  9. Bilgili, M., Sahin, B., Yasar, A., Simsek, E.: Electric energy demands of turkey in residential and industrial sectors. Renew. Sustain. Energy Rev. 16(1), 404–414 (2012)

    Article  Google Scholar 

  10. Cadenas, E., Rivera, W.: Wind speed forecasting in the south coast of Oaxaca, Mexico. Renewable Energy 32(12), 2116–2128 (2007)

    Article  Google Scholar 

  11. Chakravorty, J., Shah, S., Nagraja, H.: ANN and ANFIS for short term load forecasting. Eng. Technol. Appl. Sci. Res. 8(2), 2818–2820 (2018)

    Article  Google Scholar 

  12. Chandramowli, S., Lahr, M.L.: Forecasting new jersey’s electricity demand using auto-regressive models. Available at SSRN 2258552 (2012)

    Google Scholar 

  13. Chen, K., Chen, K., Wang, Q., He, Z., Hu, J., He, J.: Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid 10(4), 3943–3952 (2018)

    Article  Google Scholar 

  14. Dudek, G.: Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting. Int. J. Forecast. 32(3), 1057–1060 (2016)

    Article  Google Scholar 

  15. Ekonomou, L.: Greek long-term energy consumption prediction using artificial neural networks. Energy 35(2), 512–517 (2010)

    Article  Google Scholar 

  16. Ghiassi, M., Nangoy, S.: A dynamic artificial neural network model for forecasting nonlinear processes. Comput. Ind. Eng. 57(1), 287–297 (2009)

    Article  Google Scholar 

  17. González, V., Contreras, J., Bunn, D.W.: Forecasting power prices using a hybrid fundamental-econometric model. IEEE Trans. Power Syst. 27(1), 363–372 (2011)

    Article  Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  20. He, F., Zhou, J., Feng, Z.K., Liu, G., Yang, Y.: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm. Appl. Energy 237, 103–116 (2019)

    Article  Google Scholar 

  21. Jeong, K., Koo, C., Hong, T.: An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy 71, 71–79 (2014)

    Article  Google Scholar 

  22. Ju, F.Y., Hong, W.C.: Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Appl. Math. Model. 37(23), 9643–9651 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kim, J., Moon, J., Hwang, E., Kang, P.: Recurrent inception convolution neural network for multi short-term load forecasting. Energy Build. 194, 328–341 (2019)

    Article  Google Scholar 

  24. Li, B., Zhang, J., He, Y., Wang, Y.: Short-term load-forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test. IEEE Access 5, 16324–16331 (2017)

    Article  Google Scholar 

  25. Meng, M., Niu, D.: Annual electricity consumption analysis and forecasting of china based on few observations methods. Energy Convers. Manag. 52(2), 953–957 (2011)

    Article  Google Scholar 

  26. Miranda, M.S., Dunn, R.W.: One-hour-ahead wind speed prediction using a Bayesian methodology. In: 2006 IEEE Power Engineering Society General Meeting, pp. 6-pp. IEEE (2006)

    Google Scholar 

  27. Mohan, N., Soman, K., Kumar, S.S.: A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model. Appl. Energy 232, 229–244 (2018)

    Article  Google Scholar 

  28. Premanode, B., Vonprasert, J., Toumazou, C.: Prediction of exchange rates using averaging intrinsic mode function and multiclass support vector regression. Artif. Intell. Res. 2(2), 47 (2013)

    Article  Google Scholar 

  29. Song, K.B., Baek, Y.S., Hong, D.H., Jang, G.: Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Trans. Power Syst. 20(1), 96–101 (2005)

    Article  Google Scholar 

  30. Tan, P.N.: Introduction to Data Mining. Pearson Education India (2018)

    Google Scholar 

  31. Tsekouras, G., Dialynas, E., Hatziargyriou, N., Kavatza, S.: A non-linear multivariable regression model for midterm energy forecasting of power systems. Electr. Power Syst. Res. 77(12), 1560–1568 (2007)

    Article  Google Scholar 

  32. Tso, G.K., Yau, K.K.: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32(9), 1761–1768 (2007)

    Article  Google Scholar 

  33. Wang, Y., Chen, Q., Sun, M., Kang, C., Xia, Q.: An ensemble forecasting method for the aggregated load with subprofiles. IEEE Trans. Smart Grid 9(4), 3906–3908 (2018)

    Article  Google Scholar 

  34. Wang, Y., Gan, D., Sun, M., Zhang, N., Lu, Z., Kang, C.: Probabilistic individual load forecasting using pinball loss guided LSTM. Appl. Energy 235, 10–20 (2019)

    Article  Google Scholar 

  35. Wang, Y., Wu, C.: Forecasting energy market volatility using GARCH models: can multivariate models beat univariate models? Energy Econ. 34(6), 2167–2181 (2012)

    Article  Google Scholar 

  36. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  37. Wu, Z., Zhao, X., Ma, Y., Zhao, X.: A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting. Appl. Energy 237, 896–909 (2019)

    Article  Google Scholar 

  38. Xia, C., Zhang, M., Cao, J.: A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting. J. Electr. Syst. Inf. Technol. 5(3), 681–696 (2018)

    Article  Google Scholar 

  39. Xu, G., Wang, W.: Forecasting China’s natural gas consumption based on a combination model. J. Nat. Gas Chem. 19(5), 493–496 (2010)

    Article  Google Scholar 

  40. Yaslan, Y., Bican, B.: Empirical mode decomposition based denoising method with support vector regression for time series prediction: a case study for electricity load forecasting. Measurement 103, 52–61 (2017)

    Article  Google Scholar 

  41. Yuan, X., Chen, C., Yuan, Y., Huang, Y., Tan, Q.: Short-term wind power prediction based on LSSVM-GSA model. Energy Convers. Manag. 101, 393–401 (2015)

    Article  Google Scholar 

  42. Zhang, M., Mu, H., Li, G., Ning, Y.: Forecasting the transport energy demand based on PLSR method in china. Energy 34(9), 1396–1400 (2009)

    Article  Google Scholar 

  43. Zhu, S., Wang, J., Zhao, W., Wang, J.: A seasonal hybrid procedure for electricity demand forecasting in China. Appl. Energy 88(11), 3807–3815 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatin Bedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bedi, J., Toshniwal, D. (2020). Data Decomposition Based Learning for Load Time-Series Forecasting. In: Koprinska, I., et al. ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65965-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65964-6

  • Online ISBN: 978-3-030-65965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics