Skip to main content

Anomaly Detection for Consortium Blockchains Based on Machine Learning Classification Algorithm

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12575))

Included in the following conference series:

Abstract

Although the consortium blockchains commonly adopt consensus algorithms with Byzantine fault tolerance (such as practical Byzantine fault tolerance (PBFT)), its consensus efficiency will be degraded by the existence of malicious nodes or behaviors. However, the existing researches mainly focus on the detection of malicious behaviors for public blockchains, but are rare about consortium blockchains. In this paper, an anomaly detection model based on machine learning (ML) classification algorithm is proposed for consortium blockchains that adopt PBFT. Besides, a two-stage process is proposed to reduce the resource consumption for anomaly detection. The data needed for proposed model only has two dimensions and is convenient to obtain. The results of experiment show that ML is very effective in anomaly detection for consortium blockchains. Specifically, the algorithms with the highest accuracy are convolutional neural networks (CNN), k-nearest neighbor (KNN) and support vector machines (SVM) in turn. However, KNN and SVM are more suitable because resource consumption of both algorithms are one third of CNN, and the accuracy rates are above 0.9 which is 0.9% lower than CNN.

Supported by Guangxi Key Research and Development Program (Guike AB20238026); Guangxi Science and Technology Base and Talent Special Project of China (Guike AD19110042);Guangxi Natura Science Foundation of China (2018GXNSFDA281054,2018GXNSFAA281232); Guangxi Key Experimental Director Fund of Wireless Broadband Communication and Signal Processing (GXKL06160111).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electric cash system. https://bitcoin.org/bitcoin.pdf

  2. Huang, B.T., Cai, L.: Blockchain decryption: building the next generation Internet based on credit. Tsinghua University Press, Beijing, China (2016)

    Google Scholar 

  3. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), pp. 382–401 (1982). https://doi.org/10.1145/357172.357176

  4. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Symposium on Operating Systems Design and Implementation, New Orleans, USA (1999). https://doi.org/10.1145/571637.571640

  5. Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. IJ Network Secur. 19(5), pp. 653–659 (2017). https://doi.org/10.6633/IJNS.201709.19(5).01

  6. King, S., Nadal, S.: PPCoin:peer-to-peer crypto-currency with proof-of-stake. http://ppcoin.org/static/ppcoin-paper.pdf

  7. Larimer, D.: Delegated Proof-of-Stake(DPoS). Bitshare White Paper, Blacksburg (2014)

    Google Scholar 

  8. Pahlajani, S., Kshirsagar, A., Pachghare, V., et al.: Survey on private blockchain consensus algorithms. In:1st International Conference on Innovations in Information and Communication Technology (ICIICT), Chennai, India (2019). https://doi.org/10.1109/ICIICT1.2019.8741353

  9. Liu, X.F.: Research on performance improvement of Byzantine fault tolerant consensus algorithm based on dynamic authorization.Unpublished MS dissertation, Zhejiang University, Hangzhou, China (2019)

    Google Scholar 

  10. Miller, A., Xia, Y., Croman, K., et al.: The honey badger of BFT protocols. In: Computer and Communications Security, vol 24, pp. 31–42. Vienna, Austria (2016). https://doi.org/10.1145/2976749.2978399

  11. Zhou, J., Zhu, J.W.: Machine learning classification problem and algorithm research. Software 40(7), 205–208 (2019)

    Google Scholar 

  12. Ahmen, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Network Comput. Appl. 60, 19–31 (2016). https://doi.org/10.1016/j.jnca.2015.11.016

  13. Liang, J., Chen, J.H., Zhang, X.Q., et al.: Anomaly detection based on single heat coding and convolutional neural network. J. Tsinghua Univ. (Natural Science Edition) 59(07), 523–529 (2019)

    Google Scholar 

  14. Jia, F., Yan, Y., Zhang, J.Q.: Network anomaly detection based on K-means clustering feature reduction. J. Tsinghua Univ. (Natural Science Edition) 58(02), 137–421 (2018)

    Google Scholar 

  15. Miao, X.D., Liu, Y., Zhao, H.Q., et al.: Distribute online one-class support vector machine for anomaly detection over networks. IEEE Trans. Cybernetics 49, 1475–1488 (2019). https://doi.org/10.1109/TCYB.2018.2804940

  16. Chen, S., Zhu, G.S., Qi, X.Y., et al.: Research on network abnormal traffic detection based on machine learning. Inf. Commun. 180(12), 44–47 (2017)

    Google Scholar 

  17. Pham, T., Lee, S.: Anomaly detection in Bitcoin network using unsupervised learning methods. arXiv: Learning (2016)

    Google Scholar 

  18. Yin, H.S., Vatraou, R.: A first estimation of the proportion of cybercriminal entities in the bitcoin ecosystem using supervised machine learning. In:2017 IEEE International Conference on Big Data (Big Data), Boston (2017). https://doi.org/10.1109/BigData.2017.8258365

  19. Wu, J.J., Yuan, Q., Lin, D., et al.: Who are the phishers? phishing scam detection on ethereum via network embedding. IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–11 (2019). https://doi.org/10.1109/TSMC.2020.3016821

  20. Androulaki, E., Barger, A., Bortnikov, V., et al.: Hyperledger Fabric: a distributed operating system for permissioned blockchains. In: EuroSys 2018: Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal (2018) . https://doi.org/10.1145/3190508.3190538

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, D., Chen, B., Li, L., Ding, Y. (2020). Anomaly Detection for Consortium Blockchains Based on Machine Learning Classification Algorithm. In: Chellappan, S., Choo, KK.R., Phan, N. (eds) Computational Data and Social Networks. CSoNet 2020. Lecture Notes in Computer Science(), vol 12575. Springer, Cham. https://doi.org/10.1007/978-3-030-66046-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66046-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66045-1

  • Online ISBN: 978-3-030-66046-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics