Skip to main content

Multidimensional Analysis of Fake News Spreaders on Twitter

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12575))

Included in the following conference series:

Abstract

Social media has become a tool to spread false information with the help of its large complex network. The consequences of such misinformation could be very severe. The paper uses the Twitter conversations about the scrapping of Article 370 in India to differentiate the spreaders of fake news from the general spreaders. Various features were used for comparison such as bot usage, patterns and emotions in tweets posted by bots, heterogeneity among the spreaders, and geographic as well as demographic characteristics. The bots were found to be relatively more indulged in spreading fake tweets by conversing more through replies. The tweets related to bots engaged in spreading fake news are more emotionally loaded especially with anger, disgust and trust than tweets posted by any other bots. The people living outside India played a major role in the dissemination of fake news on Article 370. The social connections as well as demographic features do not distinguish the fake news spreaders on the platform, although the fewer number of older people were found among the fake news spreaders. This may help in automating the detection of fake news spreaders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lazer, D.M., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018)

    Article  Google Scholar 

  2. Bergmann, E.: Populism and the politics of misinformation. Safundi 21(3), 251–265 (2020)

    Article  Google Scholar 

  3. Ayoob, K.-T., Duyff, R.L., Quagliani, D.: Position of the American dietetic association: food and nutrition misinformation. J. Am. Diet. Assoc. 102(2), 260–266 (2002)

    Article  Google Scholar 

  4. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., Lazer, D.: Fake news on Twitter during the 2016 US presidential election. Science 363(6425), 374–378 (2019)

    Article  Google Scholar 

  5. Thomas, K., Grier, C., Song, D. and Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 243–258 (2011)

    Google Scholar 

  6. Mike, A.: The partnership press: Lessons for platform-publisher collaborations as Facebook and news outlets team to fight misinformation (2018)

    Google Scholar 

  7. Pennycook, G., McPhetres, J., Zhang, Y., Lu, J.G., Rand, D.G.: Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31(7), 770–780 (2020)

    Article  Google Scholar 

  8. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  9. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., Lazer, D.: Fake news on Twitter during the 2016 US presidential election. Science 363(6425), 374-378 (2019)

    Google Scholar 

  10. Shao, C., Ciampaglia, G.L., Flammini, A. and Menczer, F.: Hoaxy: a platform for tracking online misinformation. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 745–750 (2016)

    Google Scholar 

  11. Zhao, Z., et al.: Fake news propagates differently from real news even at early stages of spreading. EPJ Data Sci. 9(1), 1–14 (2020). https://doi.org/10.1140/epjds/s13688-020-00224-z

    Article  Google Scholar 

  12. Kušen, E., Strembeck, M.: Politics, sentiments, and misinformation: An analysis of the Twitter discussion on the: Austrian presidential elections. Online Soc. Netw. Media 5(2018), 37–50 (2016)

    Google Scholar 

  13. Zollo, F., Quattrociocchi, W.: Misinformation spreading on Facebook. In: Lehmann, S., Ahn, Y.-Y. (eds.) Complex Spreading Phenomena in Social Systems. CSS, pp. 177–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77332-2_10

    Chapter  Google Scholar 

  14. Brennen, J.S., Simon, F., Howard, P.N., Nielsen, R.K.: Types, sources, and claims of Covid-19 misinformation. Reuters Inst. 7, 1–3 (2020)

    Google Scholar 

  15. Kashmir Rumour Mill On Social Media Goes Into Overdrive. https://economictimes.indiatimes.com/news/politics-and-nation/kashmir-rumour-mill-on-social-media-goes-into-overdrive/articleshow/70636473.cms?from=mdr. Accessed 14 Aug 2019

  16. Castillo, C., Mendoza, M. and Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684 (2011)

    Google Scholar 

  17. Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.C., Flammini, A., Menczer, F.: The spread of low-credibility content by social bots. Nature Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  18. Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2019)

    Google Scholar 

  19. Yang, K.C., Hui, P.M., Menczer, F.: Bot electioneering volume: Visualizing social bot activity during elections. In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 214–217 (2019)

    Google Scholar 

  20. Shu, K., Wang, S., Liu, H.: Understanding user profiles on social media for fake news detection. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 430–435. IEEE (2018)

    Google Scholar 

  21. Linvill, D.L., Boatwright, B.C., Grant, W.J., Warren, P.L.: The Russians are hacking my brain! investigating Russia’s internet research agency twitter tactics during the 2016 United States presidential campaign.". Comput. Hum. Behav. 99, 292–300 (2019)

    Article  Google Scholar 

  22. Plutchik, R.: A general psychoevolutionary theory of emotion. In: Theories of Emotion, pp. 3–33. Academic Press (1980)

    Google Scholar 

  23. Mohammad, S.M. and Turney, P.D.: Nrc emotion lexicon. Natl. Res. Counc. Canada 2, (2013)

    Google Scholar 

  24. Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: Botornot: a system to evaluate social bots. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273–274 (2016)

    Google Scholar 

  25. Wang, Z., et al.: Demographic inference and representative population estimates from multilingual social media data. In: The World Wide Web Conference, pp. 2056–2067 (2019)

    Google Scholar 

  26. Lužar, B., Levnajić, Z., Povh, J., Perc, M.: Community structure and the evolution of interdisciplinarity in Slovenia’s scientific collaboration network. Plos one 9(4), e94429 (2014)

    Article  Google Scholar 

  27. Wald, R., Khoshgoftaar, T.M., Napolitano, A., Sumner, C.: Predicting susceptibility to social bots on twitter. In: 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), pp. 6–13. IEEE (2013)

    Google Scholar 

  28. de Lima Salge, C.A., Berente, N.: Is that social bot behaving unethically? Commun. ACM 60(9), 29–31 (2017)

    Google Scholar 

  29. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), 10008 (2008)

    Article  Google Scholar 

  30. Paschen, J.: Investigating the emotional appeal of fake news using artificial intelligence and human contributions. J. Prod. Brand Manage. (2019)

    Google Scholar 

  31. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context and dynamic information for studying fake news on social media. arXiv preprint arXiv:1809.01286 8 (2018)

  32. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 50-60 (1947)

    Google Scholar 

  33. Ardèvol-Abreu, A., Delponti, P., Rodríguez-Wangüemert, C.: Intentional or inadvertent fake news sharing? Fact-checking warnings and users’ interaction with social media content. El profesional de la información (EPI) 29(5), (2020)

    Google Scholar 

  34. Cardaioli, M., Cecconello, S., Conti, M., Pajola, L. and Turrin, F.: Fake news spreaders profiling through behavioural analysis. In: CLEF (2020)

    Google Scholar 

  35. Giachanou, A., Ríssola, E.A., Ghanem, B., Crestani, F., Rosso, P.: The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers. In: Métais, E., Meziane, F., Horacek, H., Cimiano, P. (eds.) NLDB 2020. LNCS, vol. 12089, pp. 181–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51310-8_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, M., Kaur, R., Iyengar, S.R.S. (2020). Multidimensional Analysis of Fake News Spreaders on Twitter. In: Chellappan, S., Choo, KK.R., Phan, N. (eds) Computational Data and Social Networks. CSoNet 2020. Lecture Notes in Computer Science(), vol 12575. Springer, Cham. https://doi.org/10.1007/978-3-030-66046-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66046-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66045-1

  • Online ISBN: 978-3-030-66046-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics