Skip to main content

Encoding of Indefinite Proximity Data: A Structure Preserving Perspective

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12594))

Abstract

Over the last two decades, kernel learning attracted enormous interest and led to the development of a variety of successful machine learning models. The selection of an efficient data representation is one of the critical aspects to get high-quality results. In a variety of domains, this is achieved by incorporating expert knowledge in the used domain-specific similarity measure. The majority of machine learning models require the similarity measure to obey some mathematical constraints. In particular to be a valid Mercer kernel, the similarity function that is used as a kernel function, has to be symmetric and positive semi-definite. Domain-specific similarity functions can be made available to kernel machines by additional operations from the field of indefinite learning. Approaches used today are often inefficient and harmful to the domain encoded knowledge. In this paper, we analyze multiple approaches in indefinite learning and suggest a novel, efficient preprocessing operation which widely preserves the domain-specific information, while still providing a Mercer kernel function. In particular, we address practical aspects like out of sample extension and an effective implementation of the approach. This is accompanied by extensive experimental results on various typical data sets with superior results in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.rdkit.org/.

References

  1. Alabdulmohsin, I.M., Cissé, M., Gao, X., Zhang, X.: Large margin classification with indefinite similarities. Mach. Learn. 103(2), 215–237 (2016)

    Article  MathSciNet  Google Scholar 

  2. Azizov, T.Y., Iokhvidov, I.S.: Linear operators in spaces with indefinite metric and their applications. J. Sov. Math. 15, 438–490 (1981)

    Article  Google Scholar 

  3. Balcan, M.F., Blum, A., Srebro, N.: A theory of learning with similarity functions. Mach. Learn. 72(1–2), 89–112 (2008)

    Article  Google Scholar 

  4. Barbuddhe, S.B., et al.: Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74(17), 5402–5407 (2008)

    Article  Google Scholar 

  5. Biehl, M., Bunte, K., Schneider, P.: Analysis of flow cytometry data by matrix relevance learning vector quantization. PLoS One 8, e59401 (2013)

    Article  Google Scholar 

  6. Boeckmann, B., et al.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  7. Chen, H., Tino, P., Yao, X.: Probabilistic classification vector machines. IEEE Trans. Neural Netw. 20(6), 901–914 (2009)

    Article  Google Scholar 

  8. Chen, Y., Garcia, E., Gupta, M., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Cichocki, A., Amari, S.I.: Families of alpha- beta- and gamma-divergences: flexible and robust measures of similarities. Entropy 12(6), 1532–1568 (2010)

    Article  MathSciNet  Google Scholar 

  10. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  Google Scholar 

  11. Dubuisson, M.P., Jain, A.: A modified hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, Conference A: Computer Vision & Image Processing, vol. 1, pp. 566–568, October 1994

    Google Scholar 

  12. Duin, R.P.: PRTools, March 2012. http://www.prtools.org

  13. Duin, R.P.W., Pękalska, E.: Non-euclidean dissimilarities: causes and informativeness. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR /SPR 2010. LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14980-1_31

    Chapter  Google Scholar 

  14. Figueras, J.: Morgan revisited. J. Chem. Inf. Comput. Sci. 33, 717–718 (1993)

    Article  Google Scholar 

  15. Filippone, M.: Dealing with non-metric dissimilarities in fuzzy central clustering algorithms. Int. J. Approx. Reasoning 50(2), 363–384 (2009)

    Article  Google Scholar 

  16. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R., Bairoch, A.: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003)

    Article  Google Scholar 

  17. Gisbrecht, A., Schleif, F.: Metric and non-metric proximity transformations at linear costs. Neurocomputing 167, 643–657 (2015)

    Article  Google Scholar 

  18. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Comput. 11(1), 139–155 (1999)

    Article  Google Scholar 

  20. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  21. Haasdonk, B.: Feature space interpretation of SVMs with indefinite kernels. IEEE TPAMI 27(4), 482–492 (2005)

    Article  Google Scholar 

  22. Harol, A., Pękalska, E., Verzakov, S., Duin, R.P.W.: Augmented embedding of dissimilarity data into (pseudo-)euclidean spaces. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 613–621. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_67

    Chapter  Google Scholar 

  23. Higham, N.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103(C), 103–118 (1988)

    Article  MathSciNet  Google Scholar 

  24. Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 1–14 (1997)

    Article  Google Scholar 

  25. Huang, R., et al.: Tox21challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front. Environ. Sci. 3, 85 (2016)

    Article  Google Scholar 

  26. Jain, A., Zongker, D.: Representation and recognition of handwritten digits using deformable templates. IEEE TPAMI 19(12), 1386–1391 (1997)

    Article  Google Scholar 

  27. Kar, P., Jain, P.: Supervised learning with similarity functions. In: Proceedings of Advances in Neural Information Processing Systems, 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, United States, vol. 25, pp. 215–223 (2012)

    Google Scholar 

  28. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Netw. 15(8–9), 945–952 (2002)

    Article  Google Scholar 

  29. Laub, J.: Non-metric pairwise proximity data. Ph.D. thesis, TU Berlin (2004)

    Google Scholar 

  30. Lee, J., Verleysen, M.: Generalizations of the Lp norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) 5th Workshop on Self-Organizing Maps, vol. 1, pp. 733–740 (2005)

    Google Scholar 

  31. Ling, H., Jacobs, D.W.: Using the inner-distance for classification of articulated shapes. In: CVPR 2005, San Diego, CA, USA, pp. 719–726. IEEE Computer Society (2005)

    Google Scholar 

  32. Loosli, G.: TrIK-SVM: an alternative decomposition for kernel methods in Krein spaces. In: Verleysen, M. (ed.) In Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN) 2019, pp. 79–94. d-side publications, Evere (2019)

    Google Scholar 

  33. Loosli, G., Canu, S., Ong, C.S.: Learning SVM in Krein spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1204–1216 (2016)

    Article  Google Scholar 

  34. Luss, R., d’Aspremont, A.: Support vector machine classification with indefinite kernels. Math. Program. Comput. 1(2–3), 97–118 (2009)

    Article  MathSciNet  Google Scholar 

  35. Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable MALDI-TOF MS-based microorganism identification. Nature Methods 3, 1–2 (2006)

    Article  Google Scholar 

  36. Mises, R.V., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsaufloesung. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 9(2), 152–164 (1929)

    Google Scholar 

  37. Münch, M., Raab., C., Biehl., M., Schleif., F.: Structure preserving encoding of non-euclidean similarity data. In: Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods, ICPRAM, vol. 1, pp. 43–51. INSTICC, SciTePress (2020)

    Google Scholar 

  38. Mokbel, B.: Dissimilarity-based learning for complex data. Ph.D. thesis, University of Bielefeld (2016)

    Google Scholar 

  39. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recogn. 39(10), 1852–1863 (2006)

    Article  Google Scholar 

  40. Oglic, D., Gärtner, T.: Scalable learning in reproducing kernel Krein spaces. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, pp. 4912–4921 (2019)

    Google Scholar 

  41. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition. World Scientific, Singapore (2005)

    Book  Google Scholar 

  42. Pękalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-euclidean or non-metric measures can be informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_96

    Chapter  Google Scholar 

  43. Pekalska, E., Paclík, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res. 2, 175–211 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  45. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics. Neural Netw. 18(8), 1093–1110 (2005)

    Article  Google Scholar 

  46. Roth, V., Laub, J., Buhmann, J.M., Müller, K.R.: Going metric: denoising pairwise data. In: NIPS, pp. 817–824 (2002)

    Google Scholar 

  47. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Signal Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  48. Saralajew, S., Villmann, T.: Adaptive tangent distances in generalized learning vector quantization for transformation and distortion invariant classification learning. In: IJCNN 2016, Vancouver, BC, Canada, 2016, pp. 2672–2679 (2016)

    Google Scholar 

  49. Scheirer, W.J., Wilber, M.J., Eckmann, M., Boult, T.E.: Good recognition is non-metric. Pattern Recogn. 47(8), 2721–2731 (2014)

    Article  Google Scholar 

  50. Schleif, F., Raab, C., Tiño, P.: Sparsification of core set models in non-metric supervised learning. Pattern Recognit. Lett. 129, 1–7 (2020)

    Article  Google Scholar 

  51. Schleif, F., Tiño, P.: Indefinite proximity learning: a review. Neural Comput. 27(10), 2039–2096 (2015)

    Article  MathSciNet  Google Scholar 

  52. Schleif, F., Tiño, P.: Indefinite core vector machine. Pattern Recogn. 71, 187–195 (2017)

    Article  Google Scholar 

  53. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Discovery. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  54. Sidiropoulos, A., et al.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. SIAM J. Discret. Math. 33(1), 454–473 (2019)

    Article  MathSciNet  Google Scholar 

  55. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

  56. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015, pp. 1365–1374. ACM (2015)

    Google Scholar 

  57. Zhang, J., Zhu, M., Qian, Y.: protein2vec: predicting protein-protein interactions based on LSTM. IEEE/ACM Trans. Comput. Biol. Bioinf. 1 (2020)

    Google Scholar 

Download references

Acknowledgments

At first, we would like to thank Michael Biehl (University of Groningen) for useful discussions, proofreading and supporting work in the initial conference publication [37]. We also thank Gaelle Bonnet-Loosli for providing support with indefinite learning and R. Duin, Delft University for various support with DisTools and PRTools[12]. We would like to thank Dr. Markus Kostrzewa and Dr. Thomas Maier for providing the Vibrio data set and expertise regarding the biotyping approach and Dr. Katrin Sparbier for discussions about the SwissProt data (all Bruker Corp.).

A related conference publication by the same authors was published at the 9th International Conference on Pattern Recognition Applications and Method (ICPRAM2020) (see [37]) - copyright related material is not affected.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Münch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Münch, M., Raab, C., Schleif, FM. (2020). Encoding of Indefinite Proximity Data: A Structure Preserving Perspective. In: De Marsico, M., Sanniti di Baja, G., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2020. Lecture Notes in Computer Science(), vol 12594. Springer, Cham. https://doi.org/10.1007/978-3-030-66125-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66125-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66124-3

  • Online ISBN: 978-3-030-66125-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics