Skip to main content

Fractal Geometry for Early Detection and Histopathological Analysis of Oral Cancer

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11987))

Abstract

Oral squamous cell carcinoma (OSCC) has complex molecular structure stimulated by certain chromatin architectural changes which are not easy to be detected by the naked eye. Prediction of OSCC can be done through various clinical and histological factors. As the OSCC treatment is dependent on histological grading the recent focus is to discover the morphological changes studied by computer-assisted image analysis. One of such more specific diagnostic and prognostic factor is the analysis of the fractal geometry. Fractal Dimension (FD) is the analysis and quantification of the degree of complexity of the fractal objects. FD provides a way to precisely analyse the architecture of natural objects. The purpose of this research is to estimate Minkowski fractal dimension of histopathological images for early detection of oral cancer. The proposed model is developed for analysis medical images to estimate Minkowski fractal dimension using a box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of oral cancerous growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverman Jr., S.: Demographics and occurrence of oral and pharyngeal cancers. The outcomes, the trends, the challenge. J. Am. Dent. Assoc. 132(Suppl), 7S–11S (2001)

    Google Scholar 

  2. Orford, J., Whalley, W.: The use of the fractal dimension to quantify the morphology of irregular-shaped particles. Sedimentology 30, 655–668 (1983)

    Article  Google Scholar 

  3. Keller, J., et al.: Texture description and segmentation through fractal geometry. Comput. Vis. Graph. Image Process. 45, 150–166 (1989)

    Article  Google Scholar 

  4. Voss, R.F.: Random fractal forgeries. In: Earnshaw, R.A. (ed.) Fundamenfa1 Algorithms for Computer Graphics, pp. 805–836. Springer-Verlag, New York (1985). https://doi.org/10.1007/978-3-642-84574-1_34

    Chapter  Google Scholar 

  5. Fournier, A., Fussell, D., Carpenter, L.: Computer rendering of stochastic models. Commun. Ass. Comput. Mach. 25(6), 371–384 (1982)

    Google Scholar 

  6. Barnsley, M.F., Ervin, V., Hardin, D., Lancaster, J.: Solution of an inverse problem for fractals and other sets. Proc. Not. Acad. Sci. 83, 1975–1977 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goutzamanis, L., Pavlopoulos, P.M., Papageorgakis, N.: Fractal analysis in the study of oral cancer. Aust Asian J Cancer 11, 5–12 (2012)

    Google Scholar 

  8. Neha, U., Shubhangi, K., Alka, D., Kumar, M.R., Rohit, M.: A study of morphometrical differences between normal mucosa, dysplasia, squamous cell carcinoma and pseudoepitheliomatous hyperplasia of the oral mucosa. IOSR J. Pharm. Biol. Sci. 5, 66–70 (2013)

    Google Scholar 

  9. Deepa, S., Tessamma, T.: Fractal features based on differential box counting method for the categorization of digital mammograms. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 2, 011–019 (2010)

    Google Scholar 

  10. Family, F., Masters, B.R., Platt, D.E.: Fractal pattern formation in human retinal vessels. Physica 38, 98–103 (1989)

    Google Scholar 

  11. Mainster, M.A.: The fractal properties of retinal vessels: embryological and clinical implications. Eye 4(Pt1), 235–241 (1990)

    Article  Google Scholar 

  12. Nelson, T.R., West, B.J., Goldberger, A.L.: The fractal lung: universal and species-related scaling patterns. Experientia 46(3), 251–254 (1990). https://doi.org/10.1007/BF01951755

    Article  Google Scholar 

  13. Cross, S.S., Start, R.D., Silcocks, P.B., Bull, A.D., Cotton, D.W., Underwood, J.C.: Quantitation of the renal arterial tree by fractal analysis. J. Pathol. 170(4), 479–484 (1993)

    Article  Google Scholar 

  14. Yeragani, V.K., Srinivasan, K., Vempati, S., Pohl, R., Blon, R.: Fractal dimension of heart rate time series: an effective measure of autonomic function. J. Appl. Physiol. 75, 2429–2438 (1993)

    Article  Google Scholar 

  15. Otsuka, K., Cornelissen, G., Halberg, F.: Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clin. Cardiol. 20, 631–638 (1997)

    Google Scholar 

  16. Pradhan, N., Dutt, D.N.: Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Comput. Biol. Med. 23, 381–388 (1993)

    Article  Google Scholar 

  17. Preissl, H., Lutzenberger, W., Purvermuller, F., Birbaumer, N.: Fractal dimensions of short EEG time series in humans. Neurosci. Lett. 225, 77–80 (1997)

    Article  Google Scholar 

  18. Southard, T.E., Southard, K.A., Jakobsen, J.R., Hillis, S.L., Najim, C.A.: Fractal dimension in radiographic analysis of alveolar process bone. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 82, 569–576 (1996)

    Google Scholar 

  19. Veenland, J.F., Grashius, J.L., Van der Meer, F., Beckers, A.L., Gelsema, E.S.: Estimation of fractal dimension in radiographs. Med. Phys. 23, 585–594 (1996)

    Article  Google Scholar 

  20. Velanovich, V.: Fractal analysis of mammographic lesions: a feasibility study quantifying the difference between benign and malignant masses. Am. J. Med. Sci. 311, 211–214 (1996)

    Article  Google Scholar 

  21. Dougherty, G., Henerby, G.M.: Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Med. Eng. Phys. 23, 369–380 (2001)

    Article  Google Scholar 

  22. Goutzanis, L., Papadogeorgakis, N., Pavlopoulos, P.M., et al.: Nuclear fractal dimension as a prognostic factor in oral squamous cell carcinoma. Oral Oncol. 44, 345–353 (2008)

    Article  Google Scholar 

  23. Waliszewski, P.: Distribution of grand-like structures in human gallbladder adenocarcinomas possesses fractal dimension. J Surg. Oncol. 71, 189–195 (1999)

    Article  Google Scholar 

  24. Oczeretko, E., Juczewska, M., Kasacka, I.: Fractal geometric analysis of lung cancer angiogenic patterns. Folia Histochem. Cytobiol. 39(Suppl. 2), 75–76 (2001)

    Google Scholar 

  25. Dey, P., Rajesh, L.: Fractal dimension in endometrial carcinoma. Anal. Quant. Cytol. Histol. 26(2), 113–116 (2004)

    Google Scholar 

  26. Yokoyama, T., Kawahara, A., Kage, M., Kojiro, M., Takayasu, H., Sato, T.: Image analysis of irregularity of cluster shape in cytological diagnosis of breast tumors: cluster analysis with 2D-fractal dimension. Diagn. Cytopathol. 33(2), 71–77 (2005)

    Article  Google Scholar 

  27. Delides, A., Panayoiotdes, I., Alegakis, A., Kyroudi, A., Banis, C., Pavlaki, A., et al.: Fractal dimension as a prognostic factor for laryngeal carcinoma. Anticancer Res. 25, 2141–2144 (2005)

    Google Scholar 

  28. Zhao, Y.-Q., Gui, W.-H., Chen, Z.-C., Tang, J.-T., Li, L.-Y.: Medical images edge detection based on mathematical morphology. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6492–6495. IEEE (2006)

    Google Scholar 

  29. Chen, S., Zhao, M., Wu, G., Yao, C., Zhang, J.: Recent advances in morphological cell image analysis. Comput. Math. Methods Med. 2012, 101536 (2012)

    MATH  Google Scholar 

  30. Pattanaik, P.A., Swarnkar, T., Sheet, D.: Object detection technique for malaria parasite in thin blood smear images. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2120–2123. IEEE (2017)

    Google Scholar 

  31. Pietikäinen, M.K.: Texture Analysis in Machine Vision. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  32. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  33. Beucher, S.: The watershed transformation applied to image segmentation. In: Scanning Microscopy-Supplement, p. 299 (1992)

    Google Scholar 

  34. Wang, M., Zheng, S., Li, X., Qin, X.: A new image denoising method based on Gaussian filter. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol. 1, pp. 163–167. IEEE (2014)

    Google Scholar 

  35. Zhihong, W., Xiaohong, X.: Study on histogram equalization. In: 2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing, pp. 177–179. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santisudha Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panigrahi, S., Rahmen, J., Panda, S., Swarnkar, T. (2020). Fractal Geometry for Early Detection and Histopathological Analysis of Oral Cancer. In: B. R., P., Thenkanidiyoor, V., Prasath, R., Vanga, O. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2019. Lecture Notes in Computer Science(), vol 11987. Springer, Cham. https://doi.org/10.1007/978-3-030-66187-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66187-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66186-1

  • Online ISBN: 978-3-030-66187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics