Skip to main content

Convex vs Convex-Concave Objective for Rare Label Classification

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11987))

  • 222 Accesses

Abstract

Machine learning algorithms based on semi-supervised strategies have drawn the attention of researchers due to their ability to work with limited labeled data making use of huge number of unlabeled samples. Graph based semi-supervised algorithms make an assumption of similarity of examples in lower dimensional manifold and use an objective that ensures similarity of labels as enforced by the similarity graph. Such methods typically make use of a L2 regularization term to avoid over-fitting. Regularization term further ensures convexity of the overall objective leading to efficient learning algorithms. Addressing the problem of low-supervision and high class imbalance, prior work has shown state-of-the-art results for anomaly detection and other important classification problems by using a convex-concave objective. The current work analyses such performance improvements of convex-concave objective thoroughly. Our study indicates that a KL-Divergence based loss function for semi-supervised learning has performed much better than the convex-concave objective based on L2-Loss. It is also seen that the one-versus-rest setting for multi-class classification using convex-concave objective is performing much weaker compared to the naturally multi-class KL-Divergence based multi-class classification setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

  2. 2.

    http://archive.ics.uci.edu/ml.

  3. 3.

    The source code used to build k-NN graph is a sub module of the frame work available at: http://download.joachims.org/sgt_light/current/sgt_light.tar.gz.

References

  1. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27819-1_43

    Chapter  MATH  Google Scholar 

  2. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56(1–3), 209–239 (2004)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(Nov), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Belkin, M., Niyogi, P., Sindhwani, V.: On manifold regularization. In: AISTATS, p. 1 (2005)

    Google Scholar 

  5. Bengio, Y., Delalleau, O., Le Roux, N.: 11 Label Propagation and Quadratic Criterion, pp. 193–216. Semi-supervised Learning Edition. MIT Press, January 2006

    Google Scholar 

  6. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 19–26. Morgan Kaufmann Publishers Inc., San Francisco (2001). http://dl.acm.org/citation.cfm?id=645530.757779

  7. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)

    Google Scholar 

  8. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2010)

    Google Scholar 

  9. Chapelle, O., Schölkopf, B., Zien, A.: Label propagation and quadratic criterion (2006)

    Google Scholar 

  10. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning (Chapelle, o. et al., eds.; 2006) [book reviews]. IEEE Trans. Neural Netw. 20(3), 542 (2009)

    Article  Google Scholar 

  11. Druck, G., Mann, G., McCallum, A.: Learning from labeled features using generalized expectation criteria. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 595–602. ACM, New York (2008). https://doi.org/10.1145/1390334.1390436

  12. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), pp. 290–297 (2003)

    Google Scholar 

  13. Liu, W., He, J., Chang, S.F.: Large graph construction for scalable semi-supervised learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 679–686 (2010)

    Google Scholar 

  14. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000). https://doi.org/10.1023/A:1007692713085

    Article  MATH  Google Scholar 

  15. Pimplikar, R., Garg, D., Bharani, D., Parija, G.: Learning to propagate rare labels. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, CIKM 2014, pp. 201–210. ACM, New York (2014). https://doi.org/10.1145/2661829.2661982

  16. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5(Jan), 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theor. 11(3), 363–371 (1965)

    Article  MathSciNet  Google Scholar 

  18. Subramanya, A., Bilmes, J.: Semi-supervised learning with measure propagation. J. Mach. Learn. Res. 12, 3311–3370 (2011). https://dl.acm.org/citation.cfm?id=1953048.2078212

    MathSciNet  MATH  Google Scholar 

  19. Subramanya, A., Bilmes, J.: Semi-supervised learning with measure propagation. J. Mach. Learn. Res. 12(null), 3311–3370 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: Advances in Neural Information Processing Systems, pp. 945–952 (2002)

    Google Scholar 

  21. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  22. Wang, J., Jebara, T., Chang, S.F.: Graph transduction via alternating minimization. In: Proceedings of the 25th International Conference on Machine learning, pp. 1144–1151. ACM (2008)

    Google Scholar 

  23. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861 (2016)

  24. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15(4), 915–936 (2003). https://doi.org/10.1162/08997660360581958

    Article  MATH  Google Scholar 

  25. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Proceedings of the 16th International Conference on Neural Information Processing Systems, NIPS 2003, pp. 321–328. MIT Press, Cambridge (2003). http://dl.acm.org/citation.cfm?id=2981345.2981386

  26. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: Proceedings of the 22nd International Conference on Machine learning, pp. 1036–1043. ACM (2005)

    Google Scholar 

  27. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Statistical Relational Learning and its Connections to Other Fields, vol. 15, pp. 67–68 (2004)

    Google Scholar 

  28. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical Report (2002)

    Google Scholar 

  29. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML 2003, pp. 912–919. AAAI Press (2003). http://dl.acm.org/citation.cfm?id=3041838.3041953

  30. Zhu, X.J.: Semi-supervised learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Technical Report (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagesh Bhattu Sristy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sristy, N.B., Nunna, S.K., Somayajulu, D.V.L.N., Kumar, N.V.N. (2020). Convex vs Convex-Concave Objective for Rare Label Classification. In: B. R., P., Thenkanidiyoor, V., Prasath, R., Vanga, O. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2019. Lecture Notes in Computer Science(), vol 11987. Springer, Cham. https://doi.org/10.1007/978-3-030-66187-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66187-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66186-1

  • Online ISBN: 978-3-030-66187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics