Skip to main content

Model-Checking Information Diffusion in Social Networks with PRISM

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2020, AT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12520))

Abstract

In this paper we present an agent-based approach to formalising information diffusion using Markov models which attempts to account for the internal informational state of the agent and investigate the use of probabilistic model-checking for analysing these models. We model information diffusion as both continuous and discrete time Markov chains, using the latter to provide an agent-centred perspective. We present a negative result - we conclude that current model-checking technology is inadequate for analysing such systems in an interesting way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is detailed in http://www.prismmodelchecker.org/doc/semantics.pdf.

  2. 2.

    Ernst Moritz Hahn, private communication.

References

  1. Bailey, N.: The Mathematical theory of Infectious Diseases and its applications. Charles Griffin and Company Ltd., London (1975)

    MATH  Google Scholar 

  2. Belardinelli, F., Grossi, D.: On the formal verification of diffusion phenomena in open dynamic agent networks. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 237–245. AAMAS 2015, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2015). http://dl.acm.org/citation.cfm?id=2772879.2772912

  3. Bolzern, P., Colaneri, P., Nicolao, G.D.: Opinion influence and evolution in social networks: a markovian agents model. Automatica 100, 219–230 (2019). https://doi.org/10.1016/j.automatica.2018.11.023, http://www.sciencedirect.com/science/article/pii/S0005109818305557

  4. Christoff, Z., Hansen, J.U.: A two-tiered formalization of social influence. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 68–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40948-6_6

    Chapter  Google Scholar 

  5. Christoff, Z., Hansen, J.U.: A logic for diffusion in social networks. J. Appl. Logic 13(1), 48–77 (2015). https://doi.org/10.1016/j.jal.2014.11.011

    Article  MathSciNet  MATH  Google Scholar 

  6. Christoff, Z., Hansen, J.U., Proietti, C.: Reflecting on social influence in networks. J. Logic Lang. Inform. 25(3), 299–333 (2016). https://doi.org/10.1007/s10849-016-9242-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  8. Dennis, L.A., Slavkovik, M., Fisher, M.: “How Did They Know?”—model-checking for analysis of information leakage in social networks. In: Cranefield, S., Mahmoud, S., Padget, J., Rocha, A.P. (eds.) COIN -2016. LNCS (LNAI), vol. 10315, pp. 42–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66595-5_3

    Chapter  Google Scholar 

  9. Duflot, M., et al.: Practical applications of probabilistic model checking to communication protocols. In: Gnesi, S., Margaria, T. (eds.) FMICS Handbook on Industrial Critical Systems, pp. 133–150. IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

  10. Fisher, M., Dennis, L.A., Webster, M.: Verifying autonomous systems. Commun. ACM 56(9), 84–93 (2013)

    Article  Google Scholar 

  11. Grandi, U., Lorini, E., Novaro, A., Perrussel, L.: Strategic disclosure of opinions on a social network. In: Proceedings of the 16th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2017) (2017)

    Google Scholar 

  12. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978). https://doi.org/10.1086/226707

    Article  Google Scholar 

  13. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton, NJ, USA (2008)

    Book  Google Scholar 

  14. Jackson, M.O., Rogers, B.W., Zenou, Y.: The economic consequences of social-network structure. J. Econ. Lit. 55(1), 49–95 (2017). https://doi.org/10.1257/jel.20150694

    Article  Google Scholar 

  15. Kouvaros, P., Lomuscio, A.: Formal verification of opinion formation in swarms. In: Proceedings of the 2016 International Conference on Autonomous Agents & #38; Multiagent Systems, pp. 1200–1208. AAMAS 2016, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2016). http://dl.acm.org/citation.cfm?id=2936924.2937099

  16. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6

    Chapter  Google Scholar 

  17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  18. Kwiatkowska, M., Thachuk, C.: Probabilistic model checking for biology. In: Software Safety and Security. NATO Science for Peace and Security Series - D: Information and Communication Security, IOS Press (2014), to appear

    Google Scholar 

  19. Lamberson, P.J.: Linking network structure and diffusion through stochastic dominance. In: Complex Adaptive Systems and the Threshold Effect, Papers from the 2009 AAAI Fall Symposium, Arlington, Virginia, USA, November 5–7, 2009 (2009)

    Google Scholar 

  20. Li, M., Wang, X., Gao, K., Zhang, S.: A survey on information diffusion in online social networks: models and methods. Information 8(4), 118 (2017). https://doi.org/10.3390/info8040118

    Article  Google Scholar 

  21. Liu, F., Seligman, J., Girard, P.: Logical dynamics of belief change in the community. Synthese 191(11), 2403–2431 (2014). https://doi.org/10.1007/s11229-014-0432-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Mercier, H., Sperber, D.: The Enigma of Reason. Harvard University Press, London, UK (2017)

    Google Scholar 

  23. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Nat. Acad. Sci. 99(suppl 1), 2566–2572 (2002). https://doi.org/10.1073/pnas.012582999

    Article  MATH  Google Scholar 

  24. Pardo, R., Schneider, G.: Model checking social network models. In: Proceedings Eighth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20–22 September 2017, pp. 238–252 (2017). https://doi.org/10.4204/EPTCS.256.17, https://doi.org/10.4204/EPTCS.256.17

  25. Pedersen, T., Slavkovik, M.: Formal models of conflicting social influence. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 349–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_21

    Chapter  Google Scholar 

  26. Rapoport, A.: Spread of information through a population with socio-structural bias: I. assumption of transitivity. Bull. Math. Biophys. 15(4), 523–533 (1953). https://doi.org/10.1007/BF02476440, https://doi.org/10.1007/BF02476440

  27. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186 (1971)

    Article  Google Scholar 

  28. Smets, S., Velázquez-Quesada, F.R.: How to make friends: a logical approach to social group creation. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 377–390. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_26

    Chapter  Google Scholar 

  29. Winship, C.: Threshold models of social influence. In: Bearman, P., Hedström, P. (eds.) The Oxford Handbook of Analytical Sociology. Oxford University Press, Oxford (2011). https://doi.org/10.1093/oxfordhb/9780199215362.013.20

    Chapter  Google Scholar 

  30. Zonghao, G., Ou, W., Peng, Y., Lansheng, H., Weiming, W.: Model checking probabilistic network propagation protection strategies. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 354–361 (August 2016). https://doi.org/10.1109/TrustCom.2016.0084

Download references

Acknowledgements

The research was partly supported by the project “Better Video workflows via Real-Time Collaboration and AI-Techniques in TV and New Media”, funded by the Research Council of Norway under Grant No.:269790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Slavkovik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dennis, L.A., Slavkovik, M. (2020). Model-Checking Information Diffusion in Social Networks with PRISM. In: Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2020 2020. Lecture Notes in Computer Science(), vol 12520. Springer, Cham. https://doi.org/10.1007/978-3-030-66412-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66412-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66411-4

  • Online ISBN: 978-3-030-66412-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics