Skip to main content

Multi-CryoGAN: Reconstruction of Continuous Conformations in Cryo-EM Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

We propose a deep-learning-based reconstruction method for cryo-electron microscopy (Cryo-EM) that can model multiple conformations of a nonrigid biomolecule in a standalone manner. Cryo-EM produces many noisy projections from separate instances of the same but randomly oriented biomolecule. Current methods rely on pose and conformation estimation which are inefficient for the reconstruction of continuous conformations that carry valuable information. We introduce Multi-CryoGAN, which sidesteps the additional processing by casting the volume reconstruction into the distribution matching problem. By introducing a manifold mapping module, Multi-CryoGAN can learn continuous structural heterogeneity without pose estimation nor clustering. We also give a theoretical guarantee of recovery of the true conformations. Our method can successfully reconstruct 3D protein complexes on synthetic 2D Cryo-EM datasets for both continuous and discrete structural variability scenarios. Multi-CryoGAN is the first model that can reconstruct continuous conformations of a biomolecule from Cryo-EM images in a fully unsupervised and end-to-end manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andén, J., Katsevich, E., Singer, A.: Covariance estimation using conjugate gradient for 3D classification in cryo-EM. In: 12th International Symposium on Biomedical Imaging (ISBI), pp. 200–204. IEEE (2015)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  3. Bendory, T., Bartesaghi, A., Singer, A.: Single-particle cryo-electron microscopy: mathematical theory, computational challenges, and opportunities. IEEE Signal Process. Mag. 37(2), 58–76 (2020)

    Article  Google Scholar 

  4. Bora, A., Price, E., Dimakis, A.G.: AmbientGAN: generative models from lossy measurements. In: International Conference on Learning Representations, vol. 2, pp. 5–15 (2018)

    Google Scholar 

  5. Dashti, A., et al.: Trajectories of the ribosome as a Brownian nanomachine. Proc. Natl. Acad. Sci. 111(49), 17492–17497 (2014)

    Article  Google Scholar 

  6. Frank, J., Ourmazd, A.: Continuous changes in structure mapped by manifold embedding of single-particle data in Cryo-EM. Methods 100, 61–67 (2016)

    Article  Google Scholar 

  7. Gadelha, M., Maji, S., Wang, R.: 3D shape induction from 2D views of multiple objects. In: 2017 International Conference on 3D Vision (3DV), pp. 402–411 (2017)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  10. Gupta, H., McCann, M.T., Donati, L., Unser, M.: CryoGAN: a new reconstruction paradigm for single-particle Cryo-EM via deep adversarial learning. BioRxiv (2020)

    Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  12. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv:1710.10196 (2017)

  13. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  14. Lederman, R.R., Andén, J., Singer, A.: Hyper-molecules: on the representation and recovery of dynamical structures for applications in flexible macro-molecules in cryo-EM. Inverse Prob. 36(4), 044005 (2020)

    Article  MathSciNet  Google Scholar 

  15. Miolane, N., Poitevin, F., Li, Y.T., Holmes, S.: Estimation of orientation and camera parameters from cryo-electron microscopy images with variational autoencoders and generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 970–971 (2020)

    Google Scholar 

  16. Moscovich, A., Halevi, A., Andén, J., Singer, A.: Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes. Inverse Prob. 36(2), 024003 (2020)

    Article  MathSciNet  Google Scholar 

  17. Ourmazd, A.: Cryo-EM, XFELs and the structure conundrum in structural biology. Nat. Methods 16(10), 941–944 (2019)

    Article  Google Scholar 

  18. Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A.: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14(3), 290–296 (2017)

    Article  Google Scholar 

  19. Scheres, S.H.: RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180(3), 519–530 (2012)

    Article  Google Scholar 

  20. Seitz, E., Acosta-Reyes, F., Schwander, P., Frank, J.: Simulation of cryo-EM ensembles from atomic models of molecules exhibiting continuous conformations. BioRxiv p. 864116 (2019)

    Google Scholar 

  21. Singer, A., Sigworth, F.J.: Computational methods for single-particle electron cryomicroscopy. Ann. Rev. Biomed. Data Sci. 3 (2020)

    Google Scholar 

  22. Sorzano, C.O.S., et al.: Survey of the analysis of continuous conformational variability of biological macromolecules by electron microscopy. Acta Crystallogr. Sect. F Struct. Biol. Commun. 75(1), 19–32 (2019)

    Article  Google Scholar 

  23. Tewari, A., et al.: State of the art on neural rendering. arXiv preprint arXiv:2004.03805 (2020)

  24. Tulsiani, S., Efros, A.A., Malik, J.: Multi-view consistency as supervisory signal for learning shape and pose prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2897–2905 (2018)

    Google Scholar 

  25. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  26. Zhong, E.D., Bepler, T., Berger, B., Davis, J.H.: CryoDRGN: reconstruction of heterogeneous structures from cryo-electron micrographs using neural networks. bioRxiv (2020)

    Google Scholar 

Download references

Acknowledgments

This work is funded by H2020-ERC Grant 692726 (GlobalBioIm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaejun Yoo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 118 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, H., Phan, T.H., Yoo, J., Unser, M. (2020). Multi-CryoGAN: Reconstruction of Continuous Conformations in Cryo-EM Using Generative Adversarial Networks. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics