Abstract
In recent years, the interest of tethered UAVs high-altitude platforms has been widely constantly increasing in many fields. The long-time operating possibility is one of the main advantages of tethered unmanned high-altitude platforms compared to autonomous UAVs. In the paper, a flying network for emergencies using tethered multicopters is proposed. The combination of tethered unmanned high-altitude platforms and groups of UAVs in flying network for emergencies is expected to enhance the effectiveness of search and rescue operation in the wilderness as well as after natural disasters.
The reported study was funded by RFBR, project number 20-37-70059.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Scherer, J., et al.: An autonomous multi-UAV system for search and rescue. In: Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pp. 33–38 (2018)
Cubber, G.D., et al.: Introduction to the use of robotic tools for search and rescue, pp. 1–17 (2017)
Dinh, T.D., et al.: Unmanned aerial system-assisted wilderness search and rescue mission. Int. J. Distrib. Sensor Netwo. 15(6), 1–15 (2019)
Kirichek, R., Paramonov, A., Koucheryavy, A.: Swarm of public unmanned aerial vehicles as a queuing network. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 111–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30843-2_12
Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27
Ding, X.C., Rahmani, A.R., Egerstedt, M.: Multi-UAV convoy protection: an optimal approach to path planning and coordination. IEEE Trans. Rob. 26(2), 256–268 (2010)
Amelin, K., Amelina, N., Granichin, O., Granichina, O., Andrievsky, B.: Randomized algorithm for UAVs group flight optimization. IFAC Proc. Vol. 46(11), 205–208 (2013)
Shakhatreh, H., et al.: Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)
Gharibi, M., Boutaba, R., Waslander, S.L.: Internet of drones. IEEE Access 4, 1148–1162 (2016)
Fagiano, L.: Systems of tethered multicopters: modeling and control design. IFAC-PapersOnLine 50(1), 4610–4615 (2017)
Al-Radaideh, A., Sun, L.: Self-localization of a tethered quadcopter using inertial sensors in a GPS-denied environment. In 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 271–277. IEEE (2017)
Vishnevsky, V., Meshcheryakov, R.: Experience of developing a multifunctional tethered high-altitude unmanned platform of long-term operation. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS (LNAI), vol. 11659, pp. 236–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26118-4_23
Kozyrev, D.V., Phuong, N.D., Houankpo, H.G.K., Sokolov, A.: Reliability evaluation of a hexacopter-based flight module of a tethered unmanned high-altitude platform. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. CCIS, vol. 1141, pp. 646–656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36625-4_52
Perelomov, V.N., Myrova, L.O., Aminev, D.A., Kozyrev, D.V.: Efficiency enhancement of tethered high altitude communication platforms based on their hardware-software unification. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 184–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99447-5_16
Vishnevsky, V., Tereschenko, B., Tumchenok, D., Shirvanyan, A.: Optimal method for uplink transfer of power and the design of high-voltage cable for tethered high-altitude unmanned telecommunication platforms. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 240–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66836-9_20
Vishnevsky, V.M., Tereschenko, B.N.: Russian Federation Patent - 2572822 “Method of remote power for objects by wire". The patent is registered in the state register of inventions of the Russian Federation. Accessed 16 Dec 2015
Ferreira de Castro, D., Santos, J.S., Batista, M., Antônio dos Santos, D., Góes, L.: Modeling and control of tethered unmanned multicopters in hovering flight. In: AIAA Modeling and Simulation Technologies Conference, pp. 2333–2342 (2015)
Dinh, T.D., Pham, V.D., Kirichek, R., Koucheryavy, A.: Flying network for emergencies. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 58–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99447-5_6
Dinh, T.D., Le, D.T., Tran, T.T.T., Kirichek, R.: Flying ad-hoc network for emergency based on IEEE 802.11p multichannel MAC protocol. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 479–494. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36614-8_37
IEEE Standards Association. 802.11 p-2010-IEEE standard for information technology-local and metropolitan area networks-specific requirements-part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 6: Wireless access in vehicular environments (2010). http://standards.ieee.org/findstds/standard/802.11 p-2010.html
Paredes, J. A., Saito, C., Abarca, M., Cuellar, F.: Study of effects of high-altitude environments on multicopter and fixed-wing UAVs’ energy consumption and flight time. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 1645–1650. IEEE (2017)
Kirichek, R., Kulik, V.: Long-range data transmission on flying ubiquitous sensor networks (FUSN) by using LPWAN protocols. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 442–453. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_39
Goudarzi, S., Kama, N., Anisi, M.H., Zeadally, S., Mumtaz, S.: Data collection using unmanned aerial vehicles for internet of things platforms. Comput. Electric. Eng. 75, 1–15 (2019)
Kirichek, R., Vladyko, A., Paramonov, A., Koucheryavy, A.: Software-defined architecture for flying ubiquitous sensor networking. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 158–162. IEEE (2017)
Acknowledgment
The reported study was funded by RFBR, project number 20-37-70059.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dinh, T.D., Vishnevsky, V., Larionov, A., Vybornova, A., Kirichek, R. (2020). Structures and Deployments of a Flying Network Using Tethered Multicopters for Emergencies. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks. DCCN 2020. Lecture Notes in Computer Science(), vol 12563. Springer, Cham. https://doi.org/10.1007/978-3-030-66471-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-66471-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66470-1
Online ISBN: 978-3-030-66471-8
eBook Packages: Computer ScienceComputer Science (R0)