Skip to main content

Structures and Deployments of a Flying Network Using Tethered Multicopters for Emergencies

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12563))

Abstract

In recent years, the interest of tethered UAVs high-altitude platforms has been widely constantly increasing in many fields. The long-time operating possibility is one of the main advantages of tethered unmanned high-altitude platforms compared to autonomous UAVs. In the paper, a flying network for emergencies using tethered multicopters is proposed. The combination of tethered unmanned high-altitude platforms and groups of UAVs in flying network for emergencies is expected to enhance the effectiveness of search and rescue operation in the wilderness as well as after natural disasters.

The reported study was funded by RFBR, project number 20-37-70059.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherer, J., et al.: An autonomous multi-UAV system for search and rescue. In: Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pp. 33–38 (2018)

    Google Scholar 

  2. Cubber, G.D., et al.: Introduction to the use of robotic tools for search and rescue, pp. 1–17 (2017)

    Google Scholar 

  3. Dinh, T.D., et al.: Unmanned aerial system-assisted wilderness search and rescue mission. Int. J. Distrib. Sensor Netwo. 15(6), 1–15 (2019)

    Google Scholar 

  4. Kirichek, R., Paramonov, A., Koucheryavy, A.: Swarm of public unmanned aerial vehicles as a queuing network. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 111–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30843-2_12

    Chapter  Google Scholar 

  5. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  6. Ding, X.C., Rahmani, A.R., Egerstedt, M.: Multi-UAV convoy protection: an optimal approach to path planning and coordination. IEEE Trans. Rob. 26(2), 256–268 (2010)

    Article  Google Scholar 

  7. Amelin, K., Amelina, N., Granichin, O., Granichina, O., Andrievsky, B.: Randomized algorithm for UAVs group flight optimization. IFAC Proc. Vol. 46(11), 205–208 (2013)

    Article  Google Scholar 

  8. Shakhatreh, H., et al.: Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)

    Article  Google Scholar 

  9. Gharibi, M., Boutaba, R., Waslander, S.L.: Internet of drones. IEEE Access 4, 1148–1162 (2016)

    Article  Google Scholar 

  10. Fagiano, L.: Systems of tethered multicopters: modeling and control design. IFAC-PapersOnLine 50(1), 4610–4615 (2017)

    Article  Google Scholar 

  11. Al-Radaideh, A., Sun, L.: Self-localization of a tethered quadcopter using inertial sensors in a GPS-denied environment. In 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 271–277. IEEE (2017)

    Google Scholar 

  12. Vishnevsky, V., Meshcheryakov, R.: Experience of developing a multifunctional tethered high-altitude unmanned platform of long-term operation. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS (LNAI), vol. 11659, pp. 236–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26118-4_23

    Chapter  Google Scholar 

  13. Kozyrev, D.V., Phuong, N.D., Houankpo, H.G.K., Sokolov, A.: Reliability evaluation of a hexacopter-based flight module of a tethered unmanned high-altitude platform. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. CCIS, vol. 1141, pp. 646–656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36625-4_52

    Chapter  Google Scholar 

  14. Perelomov, V.N., Myrova, L.O., Aminev, D.A., Kozyrev, D.V.: Efficiency enhancement of tethered high altitude communication platforms based on their hardware-software unification. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 184–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99447-5_16

    Chapter  Google Scholar 

  15. Vishnevsky, V., Tereschenko, B., Tumchenok, D., Shirvanyan, A.: Optimal method for uplink transfer of power and the design of high-voltage cable for tethered high-altitude unmanned telecommunication platforms. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 240–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66836-9_20

    Chapter  MATH  Google Scholar 

  16. Vishnevsky, V.M., Tereschenko, B.N.: Russian Federation Patent - 2572822 “Method of remote power for objects by wire". The patent is registered in the state register of inventions of the Russian Federation. Accessed 16 Dec 2015

    Google Scholar 

  17. Ferreira de Castro, D., Santos, J.S., Batista, M., Antônio dos Santos, D., Góes, L.: Modeling and control of tethered unmanned multicopters in hovering flight. In: AIAA Modeling and Simulation Technologies Conference, pp. 2333–2342 (2015)

    Google Scholar 

  18. Dinh, T.D., Pham, V.D., Kirichek, R., Koucheryavy, A.: Flying network for emergencies. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 58–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99447-5_6

    Chapter  Google Scholar 

  19. Dinh, T.D., Le, D.T., Tran, T.T.T., Kirichek, R.: Flying ad-hoc network for emergency based on IEEE 802.11p multichannel MAC protocol. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 479–494. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36614-8_37

    Chapter  Google Scholar 

  20. IEEE Standards Association. 802.11 p-2010-IEEE standard for information technology-local and metropolitan area networks-specific requirements-part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 6: Wireless access in vehicular environments (2010). http://standards.ieee.org/findstds/standard/802.11 p-2010.html

  21. Paredes, J. A., Saito, C., Abarca, M., Cuellar, F.: Study of effects of high-altitude environments on multicopter and fixed-wing UAVs’ energy consumption and flight time. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 1645–1650. IEEE (2017)

    Google Scholar 

  22. Kirichek, R., Kulik, V.: Long-range data transmission on flying ubiquitous sensor networks (FUSN) by using LPWAN protocols. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 442–453. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_39

    Chapter  Google Scholar 

  23. Goudarzi, S., Kama, N., Anisi, M.H., Zeadally, S., Mumtaz, S.: Data collection using unmanned aerial vehicles for internet of things platforms. Comput. Electric. Eng. 75, 1–15 (2019)

    Article  Google Scholar 

  24. Kirichek, R., Vladyko, A., Paramonov, A., Koucheryavy, A.: Software-defined architecture for flying ubiquitous sensor networking. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 158–162. IEEE (2017)

    Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR, project number 20-37-70059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Kirichek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinh, T.D., Vishnevsky, V., Larionov, A., Vybornova, A., Kirichek, R. (2020). Structures and Deployments of a Flying Network Using Tethered Multicopters for Emergencies. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks. DCCN 2020. Lecture Notes in Computer Science(), vol 12563. Springer, Cham. https://doi.org/10.1007/978-3-030-66471-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66471-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66470-1

  • Online ISBN: 978-3-030-66471-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics