Abstract
In recent time, there are more achievements in technologies for 5G/MT-2020 networks the international research area have. Any way, one of the main important task in this area is the IoT traffic recognition and prediction. Currently, researchers face a new challenge to their experience, talents and desire to reach new heights in information and communication technologies. The new challenge is IMT-2030 networking technologies and services. In this case, the question with effective IoT traffic prediction methods is still relevant during transition to the next IMT-2030 network and services. IoT it is the ubiquitous conception, on which the new IMT-2030 services also based. For example, Tactile Internet, part of the solutions in digital avatars, and others. There more, these algorithms have to be more efficient and fastly in work with huge data capacity, which characterized the different services of Internet of Things. Recently, there are Machine Learning and Big Data algorithms are took this place of new algorithms for efficient and complex algorithms. In this paper, we implement IoT traffic prediction approaches using single step ahead and multi-step ahead prediction with NARX neural network. As a data we used the metadata of flows which were received through the northern interface. The prediction accuracy has been evaluated using three neural network traing algorithms: Traincgf, Traincgp, Trainlm, with MSE as performance function in term of using mean absolute percent of error (MAPE) as prediction accuracy measure IoT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Muthanna, A., et al.: Analytical evaluation of D2D connectivity potential in 5G wireless systems. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 395–403. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_33
Hammoudeh, M., Newman, R., Dennett, C., Mount, S., Aldabbas, O.: Map as a service: a framework for visualising and maximising information return from multi-modal wireless sensor networks. Sensors 15(9), 22970–23003 (2015)
Volkov, A., Khakimov, A., Muthanna, A., Kirichek, R., Vladyko, A., Koucheryavy, A.: Interaction of the IoT traffic generated by a smart city segment with SDN core network. In: Koucheryavy, Y., Mamatas, L., Matta, I., Ometov, A., Papadimitriou, P. (eds.) WWIC 2017. LNCS, vol. 10372, pp. 115–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61382-6_10
Mohammed, R., Mohammed, S.A., Shirmohammadi, S.: Machine learning and deep learning based traffic classification and prediction in software defined networking. In: IEEE International Symposium on Measurements & Networking (M&N), Catania, Italy, vol. 2019, pp. 1–6 (2019). https://doi.org/10.1109/IWMN.2019.8805044
Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2017)
Carlin, A., Hammoudeh, M., Aldabbas, O.: Intrusion detection and countermeasure of virtual cloud systems-state of the art and current challenges. Int. J. Adv. Comput. Sci. Appl. 6(6), 1–15 (2015)
Le, L.V., Lin, B.S., Do, S.: Applying big data, machine learning, and SDN/NFV for 5G early-stage traffic classification and network QoS control. Trans. Netw. Commun. 6(2), 36 (2018)
Abdellah, A.R., Mahmood, O.A.K., Paramonov, A., Koucheryavy, A.: IoT traffic prediction using multi-step ahead prediction with neural network. In: IEEE 11th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT) (2019)
Abdellah, A.R., Muthanna, A., Koucheryavy, A.: Robust estimation of VANET performance-based robust neural networks learning. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 402–414. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_34
Abdellah, A.R., Muthanna, A., Koucheryavy, A.: Energy estimation for VANET performance based robust neural networks learning. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. CCIS, vol. 1141, pp. 127–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36625-4_11
Kato, N., Fadlullah, Z.M., Mao, B., Tang, F., Akashi, O., Inoue, T., Mizutani, K.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24(3), 146–153 (2017)
Artem, V., Ateya, A.A., Muthanna, A., Koucheryavy, A.: Novel AI-based scheme for traffic detection and recognition in 5G based networks. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 243–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_21
Pilka, F., Oravec, M.: Multi-step ahead prediction using neural networks. In: IEEE Proceedings ELMAR-2011, Zadar, pp. 269–272 (2011)
Rahimipour, S., Agha-Mohaqeq, M., Hashemi, S.M.T.: Different approaches for multi-step ahead traffic prediction based on modified ANFIS. In: Proceedings of the Third International Conference on Contemporary Issues in Computer and Information Sciences (CICIS 2012), pp. 156–161 (2012)
Iqbal, M.F., Zahid, M., Habib, D., John, L.K.: Efficient prediction of network traffic for real-time applications. J. Comput. Netw. Commun. 2019, 1–11 (2019). https://doi.org/10.1155/2019/4067135
Volkov, A., Proshutinskiy, K., Adam, A.B.M., Ateya, A.A., Muthanna, A., Koucheryavy, A.: SDN load prediction algorithm based on artificial intelligence. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. CCIS, vol. 1141, pp. 27–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36625-4_3
Muthanna, A., Volkov, A., Khakimov, A., Muhizi, S., Kirichek, R., Koucheryavy, A.: Framework of QoS management for time constraint services with requested network parameters based on SDN/NFV infrastructure. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, vol. 2018. IEEE Computer Society, November 2019. https://doi.org/10.1109/ICUMT.2018.8631274
Ellah, A.R.A., Essai, M.H., Yahya, A.: Robust Backpropagation Learning Algorithm Study for Feed Forward Neural Networks. Thesis, Al-Azhar University, Faculty of Engineering (2016)
Vikhrova, O., Pizzi, S., Iera, A., Molinaro, A., Samuylov, K., Araniti, G.: Performance analysis of paging strategies and data delivery approaches for supporting group-oriented IoT traffic in 5G networks. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB-2019, vol. 2019, art. no. 8971897 (2019)
Acknowledgments
The publication has been prepared with the support of the “RUDN University Program 5-100”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Volkov, A., Abdellah, A.R., Muthanna, A., Makolkina, M., Paramonov, A., Koucheryavy, A. (2020). IoT Traffic Prediction with Neural Networks Learning Based on SDN Infrastructure. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks. DCCN 2020. Lecture Notes in Computer Science(), vol 12563. Springer, Cham. https://doi.org/10.1007/978-3-030-66471-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-66471-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66470-1
Online ISBN: 978-3-030-66471-8
eBook Packages: Computer ScienceComputer Science (R0)