Skip to main content

Root Cause Analysis in Process Mining Using Structural Equation Models

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 397))

Included in the following conference series:

Abstract

Process mining is a multi-purpose tool enabling organizations to monitor and improve their processes. Process mining assists organizations to enhance their performance indicators by helping them to find and amend the root causes of performance or compliance problems. This task usually involves gathering process data from the event log and then applying some data mining and machine learning techniques. However, using the results of such techniques for process enhancement does not always lead to any process improvements. This phenomenon is often caused by mixing up correlation and causation. In this paper, we present a solution to this problem by creating causal equation models for processes, which enables us to find not only the features that cause the problem but also the effect of an intervention on any of the features. We have implemented this method as a plug-in ProM and we have evaluated it using two real and synthetic event logs. These experiments show the validity and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We define \(\mathbb {P}(A)\) as the set of all non-empty subsets of set A.

  2. 2.

    Definition 5 and 8 are based on [11].

  3. 3.

    We usually use \(a \bullet b\) instead of \((a,b)\in \bullet \) for .

  4. 4.

    If \(\leftrightarrow \ne \emptyset \), the user can restart the procedure after adding some more situation features to the causal situation specification.

References

  1. Buijs, J.: Receipt phase of an environmental permit application process (‘wabo’), coselog project. Eindhoven University of Technology (2014)

    Google Scholar 

  2. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Granger, C.W.: Some recent development in a concept of causality. J. Econ. 39(1–2), 199–211 (1988)

    Article  MathSciNet  Google Scholar 

  4. Gupta, N., Anand, K., Sureka, A.: Pariket: mining business process logs for root cause analysis of anomalous incidents. In: Chu, W., Kikuchi, S., Bhalla, S. (eds.) DNIS 2015. LNCS, vol. 8999, pp. 244–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16313-0_19

    Chapter  Google Scholar 

  5. Hompes, B.F.A., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors explaining business process performance variation. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 177–192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_12

    Chapter  Google Scholar 

  6. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016). https://doi.org/10.1016/j.is.2015.07.003

    Article  Google Scholar 

  7. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. pp. 607–617 (2020), http://arxiv.org/abs/1905.07697

  8. Narendra, T., Agarwal, P., Gupta, M., Dechu, S.: Counterfactual reasoning for process optimization using structural causal models. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 91–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_6

    Chapter  Google Scholar 

  9. Ogarrio, J.M., Spirtes, P., Ramsey, J.: A hybrid causal search algorithm for latent variable models. In: Proceedings of Probabilistic Graphical Models - Eighth International Conference. pp. 368–379 (2016), http://proceedings.mlr.press/v52/ogarrio16.html

  10. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  11. Peters, J., Janzing, D., Schölkopf, B.: Elements of causal inference: foundations and learning algorithms. MIT press (2017)

    Google Scholar 

  12. Ratzer, A.V., et al.: CPN Tools for editing, simulating, and analysing coloured petri nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1_28

    Chapter  Google Scholar 

  13. Fani Sani, M., van der Aalst, W., Bolt, A., García-Algarra, J.: Subgroup discovery in process mining. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 237–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_17

    Chapter  Google Scholar 

  14. Scheines, R., Spirtes, P., Glymour, C., Meek, C., Richardson, T.: The tetrad project: Constraint based aids to causal model specification. Multivar. Behav. Res. 33(1), 65–117 (1998)

    Article  Google Scholar 

  15. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, prediction, and search. MIT press (2000)

    Google Scholar 

  16. Verbeek, H., Buijs, J., Van Dongen, B., van der Aalst, W.M.: Prom 6: The process mining toolkit. Proc. of BPM Demonstration Track 615, 34–39 (2010)

    Google Scholar 

  17. Wang, Y., Liang, D., Charlin, L., Blei, D.M.: The deconfounded recommender: A causal inference approach to recommendation. CoRR abs/1808.06581 (2018), http://arxiv.org/abs/1808.06581

  18. Zhang, J.: On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif. Intell. 172(16–17), 1873–1896 (2008). https://doi.org/10.1016/j.artint.2008.08.001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Sadat Qafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qafari, M.S., van der Aalst, W. (2020). Root Cause Analysis in Process Mining Using Structural Equation Models. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds) Business Process Management Workshops. BPM 2020. Lecture Notes in Business Information Processing, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-030-66498-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66498-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66497-8

  • Online ISBN: 978-3-030-66498-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics