Skip to main content

Variable Impedance Control of Manipulator Based on DQN

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

  • 1852 Accesses

Abstract

For traditional constant impedance control, the robot suffers from constant stiffness, poor flexibility, large wear and high energy consumption in the process of movement. To address these problems, a variable impedance control method based on reinforcement learning (RL) algorithm Deep Q Network (DQN) is proposed in this paper. Our method can optimize the reference trajectory and gain schedule simultaneously according to the completion of task and the complexity of surroundings. Simulation experiments show that, compared with the constant impedance control, the proposed algorithm can adjust impedance in real time while manipulator is executing the task, which implies a better compliance, less wear and less control energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buchli, J., Stulp, F., Theodorou, E., Schaal, S.: Learning variable impedance control. Int. J. Rob. Res. 30(7), 820–833 (2011)

    Article  Google Scholar 

  2. Mitrovic, D., Klanke, S., Vijayakumar, S.: Learning impedance control of antagonistic systems based on stochastic optimization principles. Int. J. Robot. Res. 30(5), 556–573 (2011)

    Article  Google Scholar 

  3. Luo, J., Solowjow, E., Wen, C., Ojea, J. A., Agogino, A. M., Tamar, A., Abbeel, P.: Reinforcement learning on variable impedance controller for high-precision robotic assembly. In: International Conference on Robotics and Automation (ICRA), pp. 3080–3087. IEEE (2019)

    Google Scholar 

  4. Ya-hui, G., Jin-jun, D., Xian-zhong, D.: Adaptive variable impedance control for robot force tracking in unstructured environment. Control and Decision, p. 10 (2019)

    Google Scholar 

  5. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press (2017)

    Google Scholar 

  6. Theodorou, E.A., Buchli, J., Schaal, S.: A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11(2010), 3137–3181 (2010)

    MathSciNet  MATH  Google Scholar 

  7. O’Regan, Gerard: Robotics. The Innovation in Computing Companion, pp. 221–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02619-6_47

    Chapter  Google Scholar 

  8. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

    Article  Google Scholar 

  9. Sergey, L., Wagener, N., Abbeel, P.: Learning contactrich manipulation skills with guided policy search. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 26–30 (2015)

    Google Scholar 

  10. Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., Levine, S.: Path integral guided policy search. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3381–3388. IEEE (2017)

    Google Scholar 

  11. Peters, J., Mulling, K., Altun, Y.: Relative entropy policy search. In: AAAI, Atlanta, pp. 1607–1612 (2010)

    Google Scholar 

  12. Fu, J., Levine, S., Abbeel, P.: One-shot learning of manipulation skills with online dynamics adaptation and neural network priors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 4019–4026. IEEE (2016)

    Google Scholar 

  13. Abbeel, P., Coates, A., Quigley, M., Ng, A.: An application of reinforcement learning to aerobatic helicopter flight. In: International Conference on Neural Information Processing Systems, pp. 1–8 (2006)

    Google Scholar 

  14. Luo, J., Edmunds, R., Rice, F., Agogino, M.: Tensegrity robot locomotion under limited sensory inputs via deep reinforcement learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6260–6267. IEEE. (2018)

    Google Scholar 

  15. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889–1897 (2015)

    Google Scholar 

  16. Levine, S., Abbeel, P.: Learning neural network policies with guided policy search under unknown dynamics. In: Advances in Neural Information Processing Systems (NIPS), pp. 1071-1079 (2014)

    Google Scholar 

  17. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for autonomous aerial vehicles with mpc-guided policy search. In: IEEE International Conference on Robotics and Automation(ICRA), pp. 528–535 (2016)

    Google Scholar 

  18. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv: 1312.5602 (2013)

  19. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)

    Google Scholar 

  20. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv: 1509.02971 (2015)

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Vol. 1. 1. MIT press Cambridge (1998)

    Google Scholar 

  22. Deisenroth, M.P., et al.: A Survey on Policy Search for Robotics. Foundations and Trends in Robotics, pp. 1–142 (2013)

    Google Scholar 

  23. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Hogan, N.: Impedance control: an approach to manipulation. In: American Control Conference, pp. 1–24. IEEE (1985)

    Google Scholar 

  25. Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)

    Article  Google Scholar 

  26. Yi, S.: Stable walking of qauadruped robot by impedance control for body motion. Int. J. Control Autom. 6(2), 99–110 (2013)

    Google Scholar 

  27. Sano, Y., Hori, R., Yabuta, T.: Comparison between admittance and impedance control method of a finger-arm robot during grasping object with internal and external impedance control. Nihon Kikai Gakkai Ronbunshu C Hen/Trans. Japan Soc. Mech. Eng. C, 79(807), 4330–4334 (2013)

    Google Scholar 

  28. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2017)

    Article  Google Scholar 

  29. Huang, L., Ge, S.S., Lee, T.H.: Fuzzy unidirectional force control of constrained robotic manipulators. Fuzzy Sets Syst. 134(1), 135–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation (NNSF) of China under Grant U1713203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, Y., Xu, H., Luo, J., Lei, Y., Xu, J., Zhang, HT. (2020). Variable Impedance Control of Manipulator Based on DQN. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics