Abstract
In this paper, a method of point cloud recognition and segmentation based on neural network is introduced. This method will be applied to the specific industrial scene to detect whether there are sudden obstacles around the robot during the working process. This method is mainly divided into two parts. The first part is to design an efficient neural network structure, which achieves modification from state of art methods. The second part is to generate the corresponding neural network point cloud training data set for the specific scene. A simulation model is used to generate scene point cloud, and a large number of data are generated randomly. Simulation results verify the effectiveness and practicability of this method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fei-Yan, Z., Lin-Peng, J., Jun, D.: Review of convolutional neural network. Chin. J. Comput. 40(6), 1229–1251 (2017). (in Chinese)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)
Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)
Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3779–3788 (2017)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3D segmentation of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2626–2635 (2018)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (ToG) 38(5), 1–12 (2019)
Zhang, K., Hao, M., Wang, J., de Silva, C.W., Fu, C.: Linked dynamic graph CNN: learning on point cloud via linking hierarchical features. arXiv preprint arXiv:1904.10014 (2019)
Yao, X., Xu, P., Wang, X.: Design of robot collision avoidance security scheme based on depth image detection. Control Eng. China 24(7), 1514–1518 (2017). (in Chinese)
Liu, W., Sun, J., Li, W., Ting, H., Wang, P.: Deep learning on point clouds and its application: a survey. Sensors 19(19), 4188 (2019)
Zhang, J., Zhao, X., Chen, Z., Zhejun, L.: A review of deep learning-based semantic segmentation for point cloud. IEEE Access 7, 179118–179133 (2019)
Chen, Y.J., Zuo, W.M., Wang, K.Q., Wu, Q.: Survey on structured light pattern codification methods. J. Chin. Comput. Syst. 9, 1856–1863 (2010)
Acknowledgements
The authors would like to gratefully acknowledge the reviewers comments. This work is supported by National Key R&D Program of China (Grant Nos. 2019YFB1310200), National Natural Science Foundation of China (Grant Nos. U1713207 and 52075180), Science and Technology Program of Guangzhou (Grant Nos. 201904020020), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, N., Lin, J., Zhong, K., Zhang, X. (2020). Research on Point Cloud Processing Algorithm Applied to Robot Safety Detection. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-66645-3_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66644-6
Online ISBN: 978-3-030-66645-3
eBook Packages: Computer ScienceComputer Science (R0)