Skip to main content

Spectral Learning of Semantic Units in a Sentence Pair to Evaluate Semantic Textual Similarity

  • Conference paper
  • First Online:
Big Data Analytics (BDA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12581))

Included in the following conference series:

  • 994 Accesses

Abstract

Semantic Textual Similarity (STS) measures the degree of semantic equivalence between two snippets of text. It has applicability in a variety of Natural Language Processing (NLP) tasks. Due to the wide application range of STS in many fields, there is a constant demand for new methods as well as improvement in current methods. A surge of unsupervised and supervised systems has been proposed in this field but they pose a limitation in terms of scale. The restraints are caused either by the complex, non-linear sophisticated supervised learning models or by unsupervised learning models that employ a lexical database for word alignment. The model proposed here provides a spectral learning-based approach that is linear, scale-invariant, scalable, and fairly simple. The work focuses on finding semantic similarity by identifying semantic components from both the sentences that maximize the correlation amongst the sentence pair. We introduce an approach based on Canonical Correlation Analysis (CCA), using cosine similarity and Word Mover’s Distance (WMD) as a calculation metric. The model performs at par with sophisticated supervised techniques such as LSTM and BiLSTM and adds a layer of semantic components that can contribute vividly to NLP tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gluebenchmark.com/leaderboard.

References

  1. Agirre, E., et al.: SemEval-2015 task 2: semantic textual similarity, English, Spanish and pilot on interpretability. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 252–263. Association for Computational Linguistics, June 2015

    Google Scholar 

  2. Agirre, E., et al.: SemEval-2014 task 10: multilingual semantic textual similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 81–91. Association for Computational Linguistics, August 2014

    Google Scholar 

  3. Agirre, E., et al.: SemEval-2016 task 1: semantic textual similarity, monolingual and cross-lingual evaluation. In: SemEval 2016, 10th International Workshop on Semantic Evaluation, San Diego, CA, Stroudsburg (PA), pp. 497–511. Association for Computational Linguistics (2016)

    Google Scholar 

  4. Agirre, E., Bos, J., Diab, M., Manandhar, S., Marton, Y., Yuret, D.: *SEM 2012: The First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp. 385–393. Association for Computational Linguistics (2012)

    Google Scholar 

  5. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., Guo, W.: *SEM 2013 shared task: semantic textual similarity. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, pp. 32–43. Association for Computational Linguistics, June 2013

    Google Scholar 

  6. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 task 1: semantic textual similarity-multilingual and cross-lingual focused evaluation. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017), Vancouver, Canada, pp. 1–14. Association for Computational Linguistics (2017)

    Google Scholar 

  7. Sultan, M.A., Bethard, S., Sumner, T.: DLS@CU: sentence similarity from word alignment and semantic vector composition. In: Proceedings of the 9th International Workshop on Semantic Evaluation, pp. 148–153. Association for Computational Linguistics, June 2015

    Google Scholar 

  8. Wu, H., Huang, H.Y., Jian, P., Guo, Y., Su, C.: BIT at SemEval-2017 task 1: using semantic information space to evaluate semantic textual similarity. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017), pp. 77–84. Association for Computational Linguistics, August 2017

    Google Scholar 

  9. Rychalska, B., Pakulska, K., Chodorowska, K., Walczak, W., Andruszkiewicz, P.: Samsung Poland NLP team at SemEval-2016 task 1: necessity for diversity; combining recursive autoencoders, WordNet and ensemble methods to measure semantic similarity. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval 2016), pp. 602–608. Association for Computational Linguistics, June 2016

    Google Scholar 

  10. Brychcín, T., Svoboda, L.: UWB at SemEval-2016 task 1: semantic textual similarity using lexical, syntactic, and semantic information. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval 2016), pp. 588–594. Association for Computational Linguistics, June 2016

    Google Scholar 

  11. Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: Towards universal paraphrastic sentence embeddings. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  12. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  13. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543, October 2014

    Google Scholar 

  14. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2018)

    Google Scholar 

  15. McCann, B., Bradbury, J., Xiong, C., Socher, R.: Learned in translation: contextualized word vectors. In: Advances in Neural Information Processing Systems, pp. 6297–6308 (2017)

    Google Scholar 

  16. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  17. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)

    Google Scholar 

  18. Sun, Y., et al.: ERNIE 2.0: a continual pre-training framework for language understanding. In: AAAI, pp. 8968–8975 (2020)

    Google Scholar 

  19. Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl. Discov. Data (TKDD) 2(2), 1–25 (2008)

    Article  Google Scholar 

  20. Li, Y., McLean, D., Bandar, Z.A., O’shea, J.D., Crockett, K.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

    Article  Google Scholar 

  21. Wu, H., Huang, H.: Sentence similarity computational model based on information content. IEICE Trans. Inf. Syst. 99(6), 1645–1652 (2016)

    Article  Google Scholar 

  22. Hotelling, H.: Canonical correlation analysis (CCA). J. Educ. Psychol. 10 (1935)

    Google Scholar 

  23. Foster, D.P., Kakade, S.M., Zhang, T.: Multi-view dimensionality reduction via canonical correlation analysis (2008)

    Google Scholar 

  24. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. In: Bauer, F.L. (ed.) Linear Algebra, pp. 134–151. Springer, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanksha Mehndiratta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehndiratta, A., Asawa, K. (2020). Spectral Learning of Semantic Units in a Sentence Pair to Evaluate Semantic Textual Similarity. In: Bellatreche, L., Goyal, V., Fujita, H., Mondal, A., Reddy, P.K. (eds) Big Data Analytics. BDA 2020. Lecture Notes in Computer Science(), vol 12581. Springer, Cham. https://doi.org/10.1007/978-3-030-66665-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66665-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66664-4

  • Online ISBN: 978-3-030-66665-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics