Skip to main content

Characterizing Marginalization and Incremental Operations on the Bayes Tree

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIV (WAFR 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 17))

Included in the following conference series:

Abstract

Perception systems for autonomy are most useful if they can operate within limited/predictable computing resources. Existing algorithms in robot navigation—e.g. simultaneous localization and mapping—employ concepts from filtering, fixed-lag, or incremental smoothing to find feasible inference solutions. Using factor graphs as a probabilistic modeling language, we emphasize the importance of marginalization operations on the equivalent Bayes (junction) tree. The objective is to elucidate the connection between simple tree-based message passing rules with the aforementioned state estimation approaches, and their frequently overlooked relation to direct marginalization on the Bayes tree. We characterize the inherent marginalization operation as part of the fundamental Chapman-Kolmogorov transit integrals which unifies many state-of-the-art approaches. The belief propagation model is then used to define five major tree inference strategies, with regard to computation recycling and resource constrained operation. A series of illustrative examples and results show the versatility of the method.

D. Fourie and A. T. Espinoza—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

    Article  MathSciNet  Google Scholar 

  2. Caesar, J.L.: Contributors and Packages (2020). https://github.com/JuliaRobotics/Caesar.jl

  3. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 353–376 (2004)

    Article  MathSciNet  Google Scholar 

  4. Dellaert, F., Kaess, M.: Square Root SAM: Simultaneous localization and mapping via square root information smoothing. Intl. J. of Robot. Res. 25(12), 1181–1203 (2006)

    Article  Google Scholar 

  5. Frank, D., Michael, K., et al.: Factor graphs for robot perception. Found. Trends in Robot. 6(1–2), 1–139 (2017)

    Google Scholar 

  6. Fourie, D.: Multi-Modal and Inertial Sensor Solutions to Navigation-type Factor Graphs. PhD thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution (2017)

    Google Scholar 

  7. Fourie, D., Leonard, J.J., Kaess, M.: A nonparametric belief solution to the Bayes tree. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Daejeon, Korea (2016)

    Book  Google Scholar 

  8. Fourie, D., Teixeira, P.V., Leonard, J.: Non-parametric mixed-manifold products using multiscale kernel densities. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6656–6662. IEEE (2019)

    Google Scholar 

  9. Frese, U.: Treemap: An O (log n) algorithm for simultaneous localization and mapping. In: International Conference on Spatial Cognition, pp. 455-477. Springer, Berlin (2004)

    Google Scholar 

  10. Udo, F., Lutz, S.: Closing a million-landmarks loop. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5032–5039. IEEE (2006)

    Google Scholar 

  11. Groves, P.D.: Principles of GNSS, inertial, and multisensor integrated navigation systems. IEEE Aerospace Electronic Syst. Magaz. 30(2), 26–27 (2015)

    Article  Google Scholar 

  12. Heggernes, P., Matstoms, P.: Finding good column orderings for sparse QR factorization. University of Linköping, Department of Mathematics (1996)

    Google Scholar 

  13. Ming, H., Michael, K.: MH-iSAM2: Multi-hypothesis iSAM using Bayes Tree and Hypo-tree. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 1274–1280. IEEE (2019)

    Google Scholar 

  14. Jerry, H., Ming, H., Eric, W., Rafael, V., Michael, K.: Information sparsification in visual-inertial odometry. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1146–1153 IEEE (2018)

    Google Scholar 

  15. Finn, V.J., Frank, J.: Optimal junction trees. In: Uncertainty Proceedings 1994, pp. 360–366. Elsevier (1994)

    Google Scholar 

  16. Kaess, M., Ila, V., Roberts, R., Dellaert, F.: The Bayes tree: An algorithmic foundation for probabilistic robot mapping. In Intl. Workshop on the Algorithmic Foundations of Robotics, WAFR, Singapore (2010)

    MATH  Google Scholar 

  17. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31, 217–236 (2012)

    Article  Google Scholar 

  18. Uffe, K.: Inference in Bayesian networks using nested junction trees. In: Learning in Graphical Models, pp. 51–74. Springer (1998)

    Google Scholar 

  19. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge, MA (2009)

    MATH  Google Scholar 

  20. Kschischang, F.R., Frey, B.J., Loeliger, H-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory, 47(2) (2001)

    Google Scholar 

  21. Leonard, J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings IEEE International Workshop on Intelligent Robots and Systems, pp. 1442–1447, Osaka, Japan (1991)

    Google Scholar 

  22. Mu, B., Paull, L., Agha-mohammadi, A., Leonard, J., How, J.: Two-stage focused inference for resource-constrained minimal collision navigation. IEEE Trans. Robotics 33(1), 124–140 (2017)

    Article  Google Scholar 

  23. Paskin, M.A.: Thin junction tree filters for simultaneous localization and mapping. In: International Joint Conference on Artificial Intelligence, pp. 1157–1164, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (2003)

    Google Scholar 

  24. Pearl, J.: Bayesian networks. Department of Statistics, UCLA (2011)

    MATH  Google Scholar 

  25. Ranganathan, A., Kaess M., Dellaert, F.: Loopy SAM. In: International Joint Conference on Artificial Intelligence, pp. 2191–2196, Hyderabad, India (2007)

    Google Scholar 

  26. Sheldon, M.R.: Introduction to probability models. Academic press (2014)

    Google Scholar 

  27. Aleksandr, V.S., Ian, D.R.: Hybrid inference optimization for robust pose graph estimation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2675–2682. IEEE (2014)

    Google Scholar 

  28. Robert, E.T., Mihalis, Y.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)

    Article  MathSciNet  Google Scholar 

  29. Walter, M.R., Eustice, R.M., Leonard, J.J.: Exactly sparse extended information filters for feature-based SLAM. Intl. J. Robotics Res. 26(4), 335–359 (2007)

    Article  Google Scholar 

  30. Yair, W., William, T.F.: Correctness of belief propagation in Gaussian graphical models of arbitrary topology. In: Advances in Neural Information Processing Systems, pp. 673–679 (2000)

    Google Scholar 

  31. Williams, S., Indelman, V., Kaess, M., Leonard, J.J., Roberts, R., Dellaert, F.: Concurrent filtering and smoothing: A parallel architecture for real-time navigation and full smoothing. The Int. J. Robot. Res. 33(12), 1544–1568 (2014)

    Article  Google Scholar 

  32. Musoff, H., Zarchan, P.: Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics (2009)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Office of Naval Research under grants N00014-18-1-2832 and MURI N00014-19-1-2571, and a National Science Foundation award IIS-1318392 and MIT Portugal Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehann Fourie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fourie, D., Espinoza, A.T., Kaess, M., Leonard, J. (2021). Characterizing Marginalization and Incremental Operations on the Bayes Tree. In: LaValle, S.M., Lin, M., Ojala, T., Shell, D., Yu, J. (eds) Algorithmic Foundations of Robotics XIV. WAFR 2020. Springer Proceedings in Advanced Robotics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-66723-8_14

Download citation

Publish with us

Policies and ethics