Abstract
Perception systems for autonomy are most useful if they can operate within limited/predictable computing resources. Existing algorithms in robot navigation—e.g. simultaneous localization and mapping—employ concepts from filtering, fixed-lag, or incremental smoothing to find feasible inference solutions. Using factor graphs as a probabilistic modeling language, we emphasize the importance of marginalization operations on the equivalent Bayes (junction) tree. The objective is to elucidate the connection between simple tree-based message passing rules with the aforementioned state estimation approaches, and their frequently overlooked relation to direct marginalization on the Bayes tree. We characterize the inherent marginalization operation as part of the fundamental Chapman-Kolmogorov transit integrals which unifies many state-of-the-art approaches. The belief propagation model is then used to define five major tree inference strategies, with regard to computation recycling and resource constrained operation. A series of illustrative examples and results show the versatility of the method.
D. Fourie and A. T. Espinoza—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)
Caesar, J.L.: Contributors and Packages (2020). https://github.com/JuliaRobotics/Caesar.jl
Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 353–376 (2004)
Dellaert, F., Kaess, M.: Square Root SAM: Simultaneous localization and mapping via square root information smoothing. Intl. J. of Robot. Res. 25(12), 1181–1203 (2006)
Frank, D., Michael, K., et al.: Factor graphs for robot perception. Found. Trends in Robot. 6(1–2), 1–139 (2017)
Fourie, D.: Multi-Modal and Inertial Sensor Solutions to Navigation-type Factor Graphs. PhD thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution (2017)
Fourie, D., Leonard, J.J., Kaess, M.: A nonparametric belief solution to the Bayes tree. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Daejeon, Korea (2016)
Fourie, D., Teixeira, P.V., Leonard, J.: Non-parametric mixed-manifold products using multiscale kernel densities. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6656–6662. IEEE (2019)
Frese, U.: Treemap: An O (log n) algorithm for simultaneous localization and mapping. In: International Conference on Spatial Cognition, pp. 455-477. Springer, Berlin (2004)
Udo, F., Lutz, S.: Closing a million-landmarks loop. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5032–5039. IEEE (2006)
Groves, P.D.: Principles of GNSS, inertial, and multisensor integrated navigation systems. IEEE Aerospace Electronic Syst. Magaz. 30(2), 26–27 (2015)
Heggernes, P., Matstoms, P.: Finding good column orderings for sparse QR factorization. University of Linköping, Department of Mathematics (1996)
Ming, H., Michael, K.: MH-iSAM2: Multi-hypothesis iSAM using Bayes Tree and Hypo-tree. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 1274–1280. IEEE (2019)
Jerry, H., Ming, H., Eric, W., Rafael, V., Michael, K.: Information sparsification in visual-inertial odometry. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1146–1153 IEEE (2018)
Finn, V.J., Frank, J.: Optimal junction trees. In: Uncertainty Proceedings 1994, pp. 360–366. Elsevier (1994)
Kaess, M., Ila, V., Roberts, R., Dellaert, F.: The Bayes tree: An algorithmic foundation for probabilistic robot mapping. In Intl. Workshop on the Algorithmic Foundations of Robotics, WAFR, Singapore (2010)
Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31, 217–236 (2012)
Uffe, K.: Inference in Bayesian networks using nested junction trees. In: Learning in Graphical Models, pp. 51–74. Springer (1998)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge, MA (2009)
Kschischang, F.R., Frey, B.J., Loeliger, H-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory, 47(2) (2001)
Leonard, J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings IEEE International Workshop on Intelligent Robots and Systems, pp. 1442–1447, Osaka, Japan (1991)
Mu, B., Paull, L., Agha-mohammadi, A., Leonard, J., How, J.: Two-stage focused inference for resource-constrained minimal collision navigation. IEEE Trans. Robotics 33(1), 124–140 (2017)
Paskin, M.A.: Thin junction tree filters for simultaneous localization and mapping. In: International Joint Conference on Artificial Intelligence, pp. 1157–1164, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (2003)
Pearl, J.: Bayesian networks. Department of Statistics, UCLA (2011)
Ranganathan, A., Kaess M., Dellaert, F.: Loopy SAM. In: International Joint Conference on Artificial Intelligence, pp. 2191–2196, Hyderabad, India (2007)
Sheldon, M.R.: Introduction to probability models. Academic press (2014)
Aleksandr, V.S., Ian, D.R.: Hybrid inference optimization for robust pose graph estimation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2675–2682. IEEE (2014)
Robert, E.T., Mihalis, Y.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)
Walter, M.R., Eustice, R.M., Leonard, J.J.: Exactly sparse extended information filters for feature-based SLAM. Intl. J. Robotics Res. 26(4), 335–359 (2007)
Yair, W., William, T.F.: Correctness of belief propagation in Gaussian graphical models of arbitrary topology. In: Advances in Neural Information Processing Systems, pp. 673–679 (2000)
Williams, S., Indelman, V., Kaess, M., Leonard, J.J., Roberts, R., Dellaert, F.: Concurrent filtering and smoothing: A parallel architecture for real-time navigation and full smoothing. The Int. J. Robot. Res. 33(12), 1544–1568 (2014)
Musoff, H., Zarchan, P.: Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics (2009)
Acknowledgements
This work was partially supported by the Office of Naval Research under grants N00014-18-1-2832 and MURI N00014-19-1-2571, and a National Science Foundation award IIS-1318392 and MIT Portugal Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fourie, D., Espinoza, A.T., Kaess, M., Leonard, J. (2021). Characterizing Marginalization and Incremental Operations on the Bayes Tree. In: LaValle, S.M., Lin, M., Ojala, T., Shell, D., Yu, J. (eds) Algorithmic Foundations of Robotics XIV. WAFR 2020. Springer Proceedings in Advanced Robotics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-66723-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-66723-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66722-1
Online ISBN: 978-3-030-66723-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)