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Abstract. Solving task planning problems involving multiple objects and mul-
tiple robotic arms poses scalability challenges. Such problems involve not only
coordinating multiple high-DoF arms, but also searching through possible se-
quences of actions including object placements, and handoffs. The current work
identifies a useful connection between multi-arm rearrangement and recent re-
sults in multi-body path planning on graphs with vertex capacity constraints.
Solving a synchronized multi-arm rearrangement at a high-level involves rea-
soning over a modal graph, where nodes correspond to stable object placements
and object transfer states by the arms. Edges of this graph correspond to pick,
placement and handoff operations. The objects can be viewed as pebbles moving
over this graph, which has capacity constraints. For instance, each arm can carry a
single object but placement locations can accumulate many objects. Efficient inte-
ger linear programming-based solvers have been proposed for the corresponding
pebble problem. The current work proposes a heuristic to guide the task planning
process for synchronized multi-arm rearrangement. Results indicate good scala-
bility to multiple arms and objects, and an algorithm that can find high-quality
solutions fast and exhibiting desirable anytime behavior.

1 Introduction

Robotic arms are deployed in a variety of applications that involve pick-and-place tasks
ranging from manufacturing to logistics and recycling. With the increasing affordability
of such systems, and the availability of platforms like dual-arm humanoids, it is impor-
tant to study how multiple robotic arms can expand upon the capabilities of individual
arms and achieve faster execution. In some traditional deployments of multiple arms,
such as automotive manufacturing, the environment is perfectly known and each arm
performs its own independent task in relatively well-separated workspaces.

This work focuses on the case that the objects location are not pre-encoded and
the arms and not sequestered. Instead the arms need to coordinate to solve object rear-
rangement tasks, where - beyond picking and placing - handoffs are also required to be
performed. Such multi-arm rearrangement challenges are clearly computationally hard.
The robotic arms are already high DoF systems. Coordinating multiple such arms to
manipulate multiple objects results in an even larger configuration space. Furthermore,
the overall planning problem involves searching both the continuous space of each robot
and scheduling the discrete sequence of actions, i.e., picking, placing and handoffs.

Consider the example problem shown in Fig [Ifleft), which involves swapping ob-
jects between two tables not both reachable by a single arm. A greedy approach for
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Fig. 1. SMAR problems: (Left two: ) A motivating problem involving switching the tables on which
the objects lie. Such a problem already needs some high-level guidance to find a solution. (Right
three: ) Steps in a larger problem instance involving 4 arms and 4 objects.

such an object swap — e.g., the left arm grasps the left object and the right arm grasps
the right — results in a bottleneck, where both arms hold an object and are unable to
perform the handoff. The solution is to transfer one of the objects first, and then move
the second object. For this example, it may appear that enforcing moving one object at
a time is a desirable approach. But this would be highly inefficient for the more general
case of Fig [[(right), which involves more arms and objects. In such cases, it is also
desirable to reduce the cost of the solution, typically corresponding to the makespan of
the tasks, by simultaneously moving arms and manipulating multiple objects.

The current work focuses on a synchronized version of the problem, where the dis-
crete actions of the arms (picking, placing and handoffs) are synchronized for a subset
of the arms, i.e., arms can also be assigned a no-operation action. The paper studies the
structure of such synchronized multi-arm rearrangement (SMAR), and argues that:

e Under assumptions, there is a novel analogy between SMAR and multi-agent path
finding (MAPF) given a graph abstraction: an object-centric, mode-graph with capacity
constraints. Such an abstraction has been recently studied in the MAPF literature [33]].
Solutions to such problems map well to solutions to a class of SMAR problems as long
as the underlying motion planning problems can also be solved.

e An integer linear programming (ILP) solution, defined by building on top of previ-
ous work [37], is practical and fast for the version of the MAPF over mode graph with
capacity that is identified to be appropriate to model SMAR problem:s.

e This ILP solution for the MAPF over mode graph with capacity is effective in guiding
the exploration of a forward search tree (SMART) for the problem.

Given these observations, the paper demonstrates the applicability to problems involv-
ing up to 9 arms and 4 objects in simulation, taking at most 10s for the harder cases.

2 Related Work

Rearrangement: Rearrangement planning [22] is a class of manipulation task and
motion planning (TAMP) problems. Earlier work focused on efficient solutions to mono-
tone instances [31]. Efficient solutions to the related assembly planning problem [9]]
also often assume monotonicity. Over the last decade, the focus incrementally moved to
harder single-arm instances of rearrangement and manipulation task planning [19120],
and hybrid approaches [14]. Progress was made in studying the structure of hard prob-
lem instances that lead to efficient solutions [[11]]. The domain of object stacking [10]
with a single arm was also explored. This motivated work on synchronized, dual-arm
rearrangement [28]], which managed to map the problem to a sequence of simpler sub-
problems. The current work follows the same philosophy to lend structure to a subset
of SMAR problems that leverages their combinatorial structure and allows for efficiency.
The object-centric focus of the current work is similar to previous approaches [[11410].



The current effort, however, explicitly handles the complexity of dealing with multiple
arms and identifies the relationship to capacity constraints on pebble graphs.
Manipulation TAMP: Early work focused on formalizing the problem’s multi-modal
structure [[2913]]. TAMP can also be approached in an integrated manner via constrained
optimization formulations [34]. There are also hierarchical search strategies, which at
a low-level call time-budgeted motion planning subroutines, and based on their out-
comes, they guide the search [1l7]] over actions in the task space [4l16]]. Heuristics are
important to effectively guide such TAMP algorithms. For instance, in multi-arm manip-
ulation an effective heuristic is to consider the path for the object as a free-flying rigid
body [3]]. More recently multi-arm task planning has been studied using an answer-set
programming-based hybrid approach [23]. Such hybrid approaches, which take into ac-
count symbolic constraints, can address a general set of task planning problems, and
can guarantee probabilistic completeness. The current work focuses on the scalabil-
ity of object rearrangement problems to multi-arm settings and considers aspects of
solution quality as well. The asymptotic optimality of TAMP problems has been investi-
gated [35124]). As the number of robots increases in TAMP, so does the number of modes
in the search space of task planning [Sl12]. An efficient TAMP planner was proposed for
single-object, multi-arm manipulation [25]]. The current work builds on top of these ef-
forts [[13I35125]. The current work focuses on rearrangement problems involving both
multiple arms and multiple objects and aims to identify effective heuristics for an oth-
erwise asymptotically optimal search of the overall search space.

Motion Planning: Sampling-based approaches have been a popular class of algorithms
in motion planning research [18l21], including more recently asymptotically optimal
(AO) variants [17415]. Recent advances in sampling-based, multi-robot motion plan-
ning focused on high DoF systems, such as the dRRT* method [6/27], which effectively
decomposes the planning space, while guaranteeing completeness and asymptotic op-
timality [30]. The current work uses an underlying dRRT*-like approach to compute
simultaneous motions for multiple arms.

Multi-agent Path Finding (MAPF): Coupled approaches [30/36] operate in the com-
posite, high-DoF configuration space. They can achieve completeness and optimality
in principle but are often computationally intractable. Decoupled solutions [8i2] reduce
the size of the search space by committing to individual agent solutions. They typically
lack completeness and optimality. Fast, efficient coupled algorithms on graphs have
been proposed [37]], which formalize the optimal multi-agent path finding problem as
integer linear program. Other efforts have focused on solving these problems with SAT
solvers [32], and more recently by modeling vertex capacities [33]]. The current work
will draw the relationship between the graphical structures of MAPF problems [33] and
borrows solution frameworks from the corresponding literature [37] to generate actions
sequences for synchronized, multi-arm rearrangement.

3 Problem Setup and Terminology

Consider a workspace YW C SFE(3), which contains a set of obstacles, a set of r sta-
tionary robot arms M = {my,...m,}, and a set of k objects O = {o01,...0x}. Each
of the arms m; has a state ¢; in a d;-dim. configuration space Cic[y..,] C R% . Each
object can attain a pose p; in Pjcp1..x C SE(3). The combined planning space is:
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Let a task space state then be Q = (q1,...¢r,P1,-..Dk) € T. A subset of this planning
space is collision-free given all possible interactions of the arms, objects and obstacles,
defined as Tpee C 7. The arms’ end-effectors are allowed to touch the objects for
grasping purposes in Tgyee.

A path for an arm m; is defined as 7; : [0,1] — C,;. Define by 7(t1, t2) the sub-
sequence of the path between t; — to, where t1,t5 € [0,1]. A composite path for
all the arms I7 : [0,1] — J[;cy. 1 C; is defined as the concurrent motion of all the
arms. There are k£ + 1 task modes of arm motions depending on interactions with the
k objects: (i) Move mode: Moves (or transit) paths 7r1M (tinit, tena) are motions of an
arm ¢ when no object is carried by the end-effector. (ii) Transfer mode: Transfer paths
7rZT (tinit, tena) are motions of an arm ¢ when an object is carried by the end-effector.
There are k such transfer modes i.e., one per object.

A complementary set of r+1 task modes exist per object. Each object is constrained
by either resting stably on a supporting surface or being grasped by an arm: (i) Stable
Pose: A stable pose p?lace is a pose for object j that is statically stable given a supporting
surface, say a tabletop, which is otherwise an obstacle. (ii) Grasped: An end-effector
can maintain a constant relative pose in S E(3) with an object when a grasp is engaged.
Manipulation actions that affect the object states above corresponds to picks, place-
ments. This is demonstrated in Fig[2} Additionally, a special interaction between two
arms and one object introduces an additional action Handoff: an instantaneous grasp
operation by one arm, and a release operation by another on the same object.

Let a set of object poses define an ar-
rangement A = (p; ...pg). A multi-arm
manipulation path I7 is valid if every task
space state along it is collision free for all
arms and objects.

handoff A

handoff B

Rearrangement Problem: An ob-
ject rearrangement problem consists of
an initial arrangement of objects at P T it
Ainit = (Pilnit cee Piknit) and a target Fig.2. The image shows the connectivity of dif-
arrangement Agon = (p%oal . _pioal). ferent modes for a SMAR problem with 2 arms
Each pose in Ajpit and Agoal is a sta- L, and R describing pick/place actions L, R,
ble pose. A feasible solution to the rear- nd 2 objects (4, B), with object-centric modes
rangement problem is a valid multi-arm (S-Stable, L-grasped by left, and R-grasped by
manipulation path that transfers the ob- right), black pick or placement edges, and red
. . handoff edges.
jects from Ajpi; to Agoal. Along this so-

lution the objects are acted upon by sequences of picks, places, and handoffs.

The cost of the solution path C : [ — R is assumed to be the maximum of the
Euclidean arc lengths for each 7; in II, more commonly called makespan. The optimal
solution to the multi-arm rearrangement problem I7* is a feasible solution that mini-
mizes the cost.



3.1 Modeling Choices and Assumptions

A popular framework [13[][S] for TAMP problems corresponds to searching over the
space of modes by building a graph that transitions between neighboring modes at the
task planning level. This approach makes motion planning calls within each mode so as
to identify the transitions. The current work follows a similar framework and builds a
tree in the s

Conditions on the High-level Task Planner and Solutions Discovered: In order to
study the complexity of the combinatorially large problem of multi-arm rearrangement,
the current work considers a simplification of the search-space. We assume that the task
planning solution trajectory is decomposed into discrete steps along which the arms can
perform synchronized execution of manipulation actions, similar to previous work [28]],
while allowing a subset of arms to not be involved in any action at a step. Effectively,
the set of actions available to each arm is (pick,place,handoff, NOACT), where NOACT
means that the arm has not immediate objective during the current step. This narrows
down the search space in two ways: a) each action has a fully defined set of choices
(available objects for picks, available placement regions for place, and free arms for
handoffs) which makes it sufficient to evaluate these combinations, and b) a sequence
of steps is a sequence of actions being assigned to arms. This essentially poses steps as
the discretization of time over the task planning solution. Note that during each step all
the arms still have to perform centralized coordinated motions.

Assumption 1 (Synchronicity) The task planning solution is decomposed into a se-
quence of synchronized manipulation actions (picks, placements, handoffs, and NOACT),
such that the end of the step is attained only when all the manipulators (except those
assigned NOACT) complete their respective actions. It is assumed that a synchronized
multi-arm rearrangement (SMAR) problem is solvable by such a synchronized solution.

Now that the general problem has been simplified to narrow it down to a search over
assignment of manipulation actions to arms over a sequence of steps, the next section
goes on to describe how this can be efficiently solved, and then incorporated into a
high-level task planner for efficiently guiding solutions.

Conditions for the Heuristic to be Effective: Despite the previous simplification, the
number of possible choices available for the assignment of actions to arms and their
sequence remains a prohibitively large space to naively search. We introduce additional
set of assumptions to bring some structure to the search space, that can describe a subset
of the synchronized multi-arm rearrangement problems.

Condition 1 (Discrete Placement Regions) Assume that there exists a set of discrete
placement regions

S={S1...5p}, S, C SE(3), p?Iace €s, vpg)lace.

It is assumed that for each such placement region, the set of arms that can reach
all the poses contained in the set is the same for every object pose in the region. Ad-
ditionally, each placement region also has a specific capacity describing the maximum
number of objects that can be guaranteed to concurrently lie in it.



Condition 2 (Uniformity of Object Reachability) Though there is no explicit restriction
on the objects being different, they must possess uniform reachability w.r.t. the decom-
position of the discrete placement regions. This means, for every object the set of arms
that can reach all poses in a specific placement region are identical. Note that the ca-
pacity of the placement region is also assumed to account for the the different object
sizes.

This object reachability condition is trivially satisfied if the objects are identical.
It should be pointed out that it is desirable to have a minimal number of placement
regions, which permits not having to reason about individual poses during the high-
level search, thereby reducing the search space. These capacity constrained placement
regions can more accurately capture the discretization of the workspace (Fig [3). The
sequence of arm actions required for a problem involving a specific combination of
placement region should remain unchanged by the specific poses involved. This can
promote the reuse of such high-level plans as well.

Condition 3 (Object Non-interactivity) For a pick action by an arm m performed on
an object at pose p, if the pose lies in a reachable placement region, the feasibility of
the pick action is independent of any other object. For a place action by an arm m
performed on an object to take it to pose p, if the pose lies in a reachable placement
region, the feasibility of the place action is only violated by an object currently at a
pose intersecting with p.

Note that object non-interactivity is guaranteed for a tabletop setup with overhead
grasps where the start and goal poses of the objects do not intersect. The condition
itself does not preclude non-monotonicity, as demonstrated in Section Consider a
problem that violates Condition [3|and is non-monotone: two objects placed one behind
another inside a narrow shelf requiring grasping the deeper object first. Such problems
lie outside the efficient subset of SMAR problems addressed in this work.

4 Mode Graph with Capacity Constraints

Despite the assumptions formulated in the previous section, as the number of arms and
objects grows, given the number of available manipulation actions, the assignment of
actions to arms, and sequencing them expresses a large search space (shown for only 2
arms and 2 objects in Fig[2). The possible actions available seem to create a notion of
connectivity, where available actions are expressed by the setup of the workspace. For
instance, if arm m; can reach the placement region S1, but ms cannot, then a pick action
on an object in Sy is not a valid action available to ms. A key insight is that it might be
possible to think of the problem in terms of the objects (as in previous work [3]]) as they
traverse the connectivity expressed by allowable actions performed upon them. Another
key insight is that the connectivity only expresses one of the constraints. There exists
a notion of capacity for manipulators and placement regions i.e., maximum number of
objects involved in single manipulation actions.

Inspired by the formulation of the multi-agent path finding problem MAPF with ver-
tex capacity constraints [33], a contribution of the current work is to pose a object-
centric mode graph to express the SMAR.



Definition 1. (Object-Centric Mode Graph) An object-centric mode graph is a directed,
weighted graph with vertex capacities. The vertices are either (i) placement regions or
(ii) arms, edges map to manipulation actions with the cost of the action encoded in the
edge weight; the capacities denote how many objects can occupy a vertex.

G(M;E), hasnodes M ={m e SUM}, andedgesE = {e(m,,m,)}
Pick: m, € S, m, € M, and m, can reach m,,
e(m,,m,) €E if < Place: m, €¢ M, m, € S, and m,, can reach m,
Handoff: m,, € M, m, € M, m,, # m,,, and m,, can reach m,
W :E — R are the edge weights
F:M — W are the vertex capacities

F(m,) = 1 if my,eM
“ number of objects that can fit in m,, if m,esS

Each mode m in the set of vertices IM corresponds either to placement regions S or
arms M. This means that card(IM) = card(S) + card(M).

Given k objects, let the set of modes they instantaneously occupy define a multi-
modal state on the mode graph, Q = (my, ... mg).

By definition of the placement regions S, a stable arrangement consists of objects
lying in a set of nodes of the mode graph G. This means, Ajniy = (P ... p*™*), piM* e
S, € M foj“it. Define this mapping as IM~1(A;,;;) = QM. This defines a set
pi™t) maps to a set of mode-graph nodes Q™* = (mi™t. .. mi"*) for o;.

Similarly define Q2°* = (m&°* ... m&°) for A, for each object o;. With a
slight abuse of notation, define an inverse mapping a fully defined task space configu-
ration maps to a set of modes on G, such that M~1(Q) = Q.

Connection to Task Modes: Compared to Fig|2| L, R map to modes for the arms in
G, All the placement regions correspond to S. For 2 objects, their multi-modal state Q
lies on one of the nodes in Fig [2| Transitioning to an adjacent Q moves both objects,
and traverses two edges in G and one edge in the task mode graph.

By the formulation of feasible multi-arm manipulation solutions, each arm executes
a sequence of moves and transfers, where an arms can manipulate a specific object
by picking, placing, or handoff. For each object o; during the execution of a valid IT
denote the discrete manipulation actions by the tuples (m;,t?) for picks, (p,,t’) for
placements, and (m;, t7) for handoff to m; at instants IT(7) respectively. As an illus-
trative example, II yields the following sequences of timed manipulation actions from
the initial to target poses of each of the k objects, using picks, placements, and handoffs.

This describes: 0; — (P, 0), (M4, t]), . .. (pfoal, )] Vo,

Each of the poses in the above sequences correspond to some placement region S by
Assumption [I] Each pick and handoff corresponds to an arm in M. This means every
tuple in the sequences above correspond to some (m,¢) where m € IM in the mode

graph at a specific time parametrization ¢.

init

(P}

Definition 2. (Multi-agent Path Finding (MAPF)) Given a starting configuration Q™™t,
and a desired final configuration is Q&°* on the mode graph G, a multi-agent path
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Fig. 3. The figure shows an instance of a multi-arm multi-object rearrangement problem, and the
corresponding mode graph G, with the MAPF solution obtained for affecting the rearrangement of
both the red and green objects across the two placement regions S; and Ss.

finding solution finds a sequence of valid vertices and edges for each object that takes
them from their start to goal vertices.

A solution to the MAPF problem defines for every object a sequence of nodes on
the graph along with the time at which the object starts occupying the node, such that
each object begins at the initial node, and ends at the target node. Let I/ be a feasible
solution to the MAPF problem of O agents on G, consisting of a sequence of multi-modal
states ITp = [Q™*, ... Q#&°!]. In terms of each object:

Io = {mo, + [(m],,,0),. (mf ). (mJ . 1)) ¥,

Constraints on motions: Certain constraints on the allowable motions of the objects
over the mode graph G respect the restrictions of the problem. The following two are
derived from the classical formulation of MAPF: (i) at any time ¢, no vertex m exceeds
its capacity IF(m), and (ii) agents do not cross each other over the same edge Vertex
capacities in G is an additional constraint that needs to be imposed to make the problem
amenable to multi-arm rearrangement. Vertex capacities cap the maximum number of
objects that can move over all the in-edges and out-edges of every vertex at any step.
Cost of MAPF: Each edge on the graph has a weight defined by W. For each object,
the solution cost is C(m,;) = > W(e;), V e; in the solution. The cost of the solution
C(Ilp) is typically defined as the maximum of each component C(7,, ).

Optimal MAPF: An optimal MAPF solution, I}, is a feasible MAPF solution that also
minimizes the cost of the MAPF solution.

Theorem 1. (Multi-arm Rearrangement Solution Solves MAPF on G) Each feasible so-
lution to the multi-arm multi-object rearrangement problem II for r arms and k objects
from arrangement Ainiy = (p™ ... piM®) 10 Agonl = (po ... pioal) reduces to a fea-
sible solution to a multi-b_ody path planning problem of k agents on G defined in Def[l]
from the corresponding Q™ to Q&°!.

Proof. By construction, there is a one-to-one correspondence between the manipula-
tion actions necessary for the rearrangement problem and edges in G. Solutions in the
complex task planning space map to the solution to the MAPF problem on a graph, where
each object starts moving at the timestamp corresponding to action involving the object
in the task planning solution I7, before progressing to the next vertex on G. At the end
of the solution, every object ends up in the target vertices on G. a



Definition 3. (Discrete MAPF on G) In this problem, starting from an initial set of ver-
tices Q™ in G, at each discrete step t each object can move to an adjacent vertex or
stay in place. Each edge traversal incurs a cost corresponding to the edge weight. After
tracing the solution steps each object reaches the final configuration Q2.

Note that in the discrete version, every time step and edge traversal is atomic. This
aligns with the synchronicity assumption of SMAR as well. The number of edges in the
solution, per object, represents the number of picks, places or handoffs involved. For
each object the cost of the solution being the number of actions is analogous to counting
the number of edges in the object’s solution, i.e., if W : IE — 1, C(7,,) = #actions.

Theorem 2. (An action optimal MAPF solution is an admissible heuristic for Synchro-
nized Multi-arm Rearrangement) The number of steps in the MAPF solution over G is
less than or equal to the number of synchronized actions (picks, places, and handoffs)
in the corresponding synchronized multi-arm rearrangement solution.

Proof. The cost of the solution is C(I1p) = max(C(m,,), . ..C(7,,)). Using this cost,
the optimal solution /1, minimizes the maximum number of actions on any object. This
analogy is applicable under the assumption set up in Section [3.1] The synchronicity
assumption allows for these synchronized actions that reflect the atomic multi-agent
steps over the mode graph. Additionally, the object non-interactivity, and reachability
assumptions ensure that the edges on the mode graph are effectively independent of
each other and reflect feasible and reachable actions for the arms. a

In general the feasibility of high-dimensional motion planning for each manipula-
tion action on the MAPF solution is not guaranteed. The MAPF solution can still be useful,
however, as a suggested sequence of actions that can be checked first for feasibility.

Observation 1 (A MAPF solution on G describes a sequence of actions for each arm) A
MAPF solution to Q2°* over the mode graph corresponds to a sequence of manipulation
actions, which if collision-free will bring the objects to the poses in Q8°.

A configuration of arms and objects Q™" € T describes the corresponding
multi-modal state Q°"™*"* = IM~1(Q). Define the MAPF problem from Q" to
Q#°*. The MAPF solution ITp = (QeUrrent Quext ... Q;...Q#°*) describes a se-
quence of vertices on G and corresponding edges or actions(picks, places and handoffs)
for each object and arm.

0, if arm m; not in solution Il
H:(elaei7 "eT‘)aei: . . . .
e, the first action involving arm m; in I1p

A slightly different estimate is used as the multi-modal goal G = (el, e,.. .er),

which comprises of an action per arm required next, i.e., &; = ) if arm m; not used to
transition to Q"**, Otherwise the corresponding the action involving the arm 7 in Q»***
is used. Thus, we obtain a longer horizon heuristic and an immediate biasing goal for
defining the next action of each arm to trace the MAPF solution towards Q&°!.

Note that while G makes stepwise progress along the MAPF solution, the heuristic
expresses something more powerful. By biasing towards the heuristic, each arm can
pre-empt what is required of it next, even if it is farther into the future than one single
step of the MAPF solution.



5 Integer Linear Program for MAPF on Mode Graph

This section outlines the solution to the MAPF problem over the mode graph. An in-
teger linear programming model is set up on the lines of previous work [37]. At a
high-level, the method takes as input the mode graph, and constructs a time-expanded
graph where a) nodes are replicated across time slices, and b) each pair of bidirec-
tional (or undirected) edge is replaced with a gadget (Fig [4)) across two time slices.
By connecting the start and goal nodes between the first
and last time slices, the solution to the multi-commodity
flow problem over the time-expanded graph (G') de-
scribes an MAPF solution.. . . ML (t) M (t+1)
For the sake of brevity most of the replicated details
are omitted here. The specific addition required to guar- Fig.4. Gadget for construct-
antee solutions that are usable over the mode graph, for- ing the time-expanded graph
mulates the capacity constraints at the modes. Inspired by from the mode graph.
previous work [33]] the notion of capacity has to be mod-
eled correctly. These capacity constraints essentially encode the restriction that through
any instant step (or time slice) at capped number of objects can interact with the mode.
Let v denote a node in the time expanded graph corresponds to some mode m,,, and
e; denote each edge. There are indicator variables assigned to each robot (¢ € [1...k])
moving across an edge e; as x; ;. Let §7 (v) be the out-edges and ~ (v) be out-edges.

M, (1) M, (t+1)

Capacity Constraint: > z;;+ > 2;; <Fm,)Voe G 1<i<k
ej €07 (v) ej €5 (v)

Minimizing the maximum traveled distance with uniform modal edge costs mini-
mizes the maximum number instantaneous actions in the MAPF solution over G.
Implementation Details: The current objective is to use an underlying MAPF solver
as a quick heuristic over the mode graph G. It is therefore beneficial to encode some
measure of the cost of the actions represented by edges in the mode graph in MAPF.

Costs: The cost of an edge in the mode graph provided by the W function is as-
sumed to be the position distance in R? of the a) centroid of the placement region poses,
b) the positions of the root frames for each arm. The objective remains minimizing the
maximum traveled distance on G

ILP Invocation: In previous work [37] the underlying ILP model was augmented
for a range of time-steps (11in t0 Thax) and called repeatedly. The current work needs
the solution to be obtained ideally in a single ILP call. We restrict the number of ILP

invocations by the following change:
Tonaw =7 x k. C'(e;;) = time(e; ;) - Cle; ;)

where time(e; ;) returns the time slice corresponding to the source of e; ;. Using the
reformulated cost C’, in combination with the weighted edges, we might lose some of
the strict optimality guarantees, but this lets us get solutions which a) reason about
heuristic costs, and b) try to minimize the number of time steps the robots move (i.e.,
prefer to lower maximum number of actions).

The solution can be retrieved by pruning the end of the solution where the objects
reach their target modes and stay still for the remainder of the time-steps. The results
from experiments indicate that the modified MAPF solver remains useful as a heuristic.



6 Integrated Task and Motion Planning

An integrated task and motion planning approach has to simultaneously explore (i) arm
configurations C; x. .. C,. for every arm, and (ii) picks, places, and handoffs that change
object poses for every object.

The underlying search is similar to previous work [25]], which described a multi-
modal integrated task and motion planning algorithm using an underlying dRRT*[27]-
like decomposition. It has been shown in previous work [27/28125] that this search
strategy is critical for solving these high-dimensional multi-robot problems. The key
differences in the proposed approach are outlined below.

a) the integratation the sampling of transition configurations that achieve neighboring
modes inside the online search process. For instance, if a neighboring mode on G in-
volves the arm m; picking up o;, an IK solver can be invoked to find a set of grasping
configurations to add as possible grounded configurations to plan to.

b) A multi-body path planning heuristic over the mode-graph is used to bias the high-
level search, that determines what arm actions would be preferred. In a lot of problem
instances, the search space is so large, and the multi-body coordination so constraining,
this heuristic proves crucial to not only solution quality, but also feasibility within a
limited time budget. Next we describe some underlying modules that are assumed to be
available to the algorithm.

Mode-graph Generator: There is a module which is aware of the spatial configu-
ration of all the robots and placement regions, and their respective reachability, in order
to generate a set of placement regions satisfying Assumption [2] returning G.

MAPF Solver: An MAPF solver subroutine is assumed to be available (as is described
in Section[5] Given an initial multi-modal state, the module returns the multi-body path
planning solution for the objects over the mode graph with capacity constraints, that
ideally minimizes the maximum path cost by of object.

Transition Sampler: It is assumed that a transition sampler can generate complete
configurations defining manipulation actions like picks and placements involving an
object and an arm, or handoffs involving two arms and an object. The sampler should
be able to provide any number of these mode transitions, whenever invoked.

6.1 Algorithm

Bringing together all the tools described so far, a forward search tree to solve sychro-
nized multi-arm rearrangement (SMART) is outlined in this section. The method con-
structs a search tree T of task space configurations @) € T, rooted at Qi with the
objects at A;y,;, the objective being to find a continuous sequence of motions that reach
a state such that the objects are in their final arrangement Aga1.

Each vertex of the tree consists of () and an unique identifier 7 keeping track of
the sequence of manipulation actions that led to the current tree vertex. This iden-
tifier is similar to orbits described in previous work [35]. The high-level algorithm
is described in Algo [I] The method first builds a mode graph calling the subroutine
build mode_graph. As mentioned, an internal counter must keep track of different
sequences of actions (Tcount)-



During each iteration, a select_mode selects a mode m and the transition id 7 from
the tree. A fraction of the invocations, the subroutine is designed to goal bias by select-
ing modes that have made the most progress towards the goal. If the selected 7 has never
been expanded before, the heuristic function for it would be empty. In such a case, the
multi-body motion planning subroutine MAPF is called to obtain a sequence of usable ac-
tions (#) that can guide the arms. The computation of this heuristic follows Theorem [I]
If not invoked before, or a fraction of the expansions, neighboring grounded transi-
tion configurations are added. This is tantamount to inspecting the current multimodal
state and expanding the set of available grasping, placement or handoff configurations.
The subroutines select,extend
and rewire follow standard
definitions except the restric- 1 IT <+ 0;  Teount < 0;
tion that they operate on the set 2 G < build-mode_graph();
of vertices that have the same 3 T.V << Qinit, increment (tcount) >;
id 7. The heuristic is used in 4 for max_iters do
select and extend to bias to- (m, 7) + select_mode();
wards making progress towards if H(7) = () then
various modal goals. Specific | H(7) < MAPF(m, M~ " (Agoa));
consideration has to be pro- if H(7) # () or add_fraction() then
vided for modal guidance that | sample_trans(adj(G,m),t);
is inherently coupled (hand- 10 Qnear < select(r,H);
offs) versus single arm targets 11 Qnew < extend(Qnear, 7, H);
(picks or places). If the ex- 12 Qbest — rewire(Qnew);
tension is valid and collision- 13 if IT(Qvest = @new) € Tree then

Algorithm 1: SMART(Qinit, Agoal)

R-2E- R B N |

free, and the new node sat- 14 T.V «+ T.VU < Quew, T >;

isfies a transition to an ad- 1s T.F <+ T.EU

jacent mode, the search can 16 (< Qbest, T >, < Qnews T >);
progress to an adjacent multi- 17 if modal check(IM~!(Qyew), 7) then
modal state through the current 18 Tnew $— increment(Teount);
transition sequence (tracked by 19 T.V ¢ T.VU < Qnew; Tnew >}
incrementing 7). If the adjacent 20 T.FE + T.EU

mode attains the target arrange- 21 (< Qnew, T >, < Qnew; Tnew >);
ment, the solution path IT isup- 22 if M~ (Qnew) = M1 (Agoar) then
dated if the cost improves. 23 I, e < retrace(Quew);

Note on synchronicity: In the 24 if C({1,,e0y) < C(IT) then
algorithm, the synchronicity 25 | I < ews

assumption is encoded into the  ,¢ yeturn I7
function modal_check which
checks against the multimodal goals like G returned by the MAPF solver or fully defined
multimodal states defined by the sample_trans subroutine. This restricts the search
from adding new transition id-ed components to T every time partial progress has been
made, and enforces the synchronization assumption.




7 Results

This section goes over the experimental evaluations performed to demonstrate the ef-
fectiveness of the proposed approach. The same underlying task planning framework is
used in each experiment. The key metrics we want to measure are the time it takes to
find the initial solution, the solution cost returned after 30s, the number of actions, and
success ratio. All experiments were run on a single core of an Intel(R) Xeon(R) CPU
E5-1660 v3 @ 3.00GHz processor having a maximum available 16GB of RAM, and
data is reported averaged over 20 trials.

Comparison Points: Three strategies are used as guidance in the task planner.
SMART (proposed): Algo [T] uses the MAPF over the mode graph with capacity con-
straints to the goal arrangement of objects in the mode graph, and uses this solution as
the guidance from the current mode.

Sequential: The objects are prioritized in an arbitrary way that is fixed per experiment.
The Sequential heuristic solves the MAPF problem over the mode graph for the next
remaining object. This chains a sequence of single-object solutions.

Greedy: The Greedy heuristic solves the MAPF problem for every object, and guides
towards the next mode for every object greedily. Any conflicts that might arise from
this guidance have to be overcome by the exploration in the underlying task planner.
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Fig. 5. Benchmarks setups with (left to right) two, four, six, and nine arms respectively.

Benchmarks: The experiments inspect the problem of transferring objects between
two tables at two ends of the workspace using a set of 7DoF Kuka iiwal4 manipulator.
Fig [5 outlines the combinations of 7 x k as the number of robots and objects used in
four different such setups: 2 x 2,4 x 4,6 x 4,9 x 4. Note that simply the centralized
motion planning problem for 9 robots lies in a 63-dimensional space.

To simplify manipulation the objects are 6¢m x 6¢m cubes with a grasp on each side,
and 5 IK solutions for each (pick, place, or handoff), whose computation is included in
the reported times. Three of the benchmarks have non-intersecting starts and goals.
Switch: In this benchmark objects are split into two halves. Each set has initial poses
sampled on one of the tables and final poses on the other one. For the other half the
transfer direction is reversed. Given the setup, this can cause bottlenecks for Greedy
which can get stuck if the problem involves poses on opposite placement regions.
Side-to-side: In this benchmark all the objects have their initial poses sampled on one of
the tables, while the final poses are sampled on the other table. This promotes concurrent
transfers using all the arms adjacent to the tables.

Random: In this benchmark, for every object the start pose is selected on either table,
and the target lies on the opposite table. This in essence is a combination of the other
two benchmark with the direction of the transfers randomized.



B sMART

Switch Switch
Initial Computation Time Final Solution Cost

- Sequential - Greedy

Switch
Number of Actions

Switch
Success Ratio

w
£70
10 S 60 14
58 €50 022
? 3 ]
e 2w
F a § 20 g 6
£ 4
: ol ;
o 2x2 4x4 6x4 9x4 @ 2x2 4x4 6x4 9x4 o 2x2 4x4 6x4 9x4 2x2 4x4 6x4 9x4
r Robots x k Objects r Robots x k Objects r Robots x k Objects r Robots x k Objects
Side-to-Side Side-to-Side Side-to-Side Side-to-Side
Initial Computation Time _ Final Solution Cost Number of Actions Success Ratio
w
12 270
10 Se60
b~
%8 50
1 340
£ ¢ 230
e £
4 220
2 210
[ & ol

"2x2 4x4 6x4 9x4
r Robots x k Objects

2x2 4x4 6x4 9x4
r Robots x k Objects

2x2 4x4 6x4 9x4
r Robots x k Objects

2x2 4x4 6x4 9x4
r Robots x k Objects

Random Random Random Random
Initial Computation Time _ Final Solution Cost Number of Actions 1.0 Success Ratio
16 £ ’
14 20.8
~12 ©
% 10 € 0.6
w
'E 2 g0.4
. 30.2
@ 0.
o mm 0 0.0

02x2 4axa4 6x4 9x4
r Robots x k Objects

2x2 4x4 6x4 9x4
r Robots x k Objects

2x2 4x4 6x4 9x4
r Robots x k Objects

2x2 4x4 6x4 9x4
r Robots x k Objects

Fig. 6. Benchmarks per row from top to bottom, the switch, side-to-side, and sort benchmark data
is reported. From left to right, (First:) shows the initial computation times, (Second:) shows the
solution duration after 30s of computation, (Third:) shows the total number of discrete instants of
object transitions or actions in the solution, and (Fourth:) the success ratio.

7.1 Switch Benchmark

The data as shown in Fig[f[7op). Greedy always gets bottlenecked in 2 x 2. With more
manipulators, the Greedy success stays low. Note that both SMART and Sequential have
similar performance for 2 x 2 since the solutions should be very similar. As the number
of robots increases SMART the initial times are either comparable or better than Sequen-
tial, while providing better solutions, and far fewer manipulation actions (since SMART
minimizes this). The improvement in the number of actions is not identical to the so-
lution durations since there is an overhead of arm coordination that might exist since
SMART allows an arbitrary number of arms to interact at any time.

7.2 Side-to-side Benchmark

The data as shown in Fig[6[middle). All three comparison points succeed in this prob-
lem. SMART needs far fewer actions and a faster initial solution time. The costs are
comparable for SMART and Greedy, while being better than Sequential solutions. For
instance in the 9 x 4 case SMART has a 20s speedup compared to Sequential.

7.3 Random Benchmark

The data is shown in Fig[6[bottom). In terms of computa-
tion times SMART is similar or better to Sequential. Greedy
shows poor performance with bottlenecks and fails often.
Its solutions are similar to SMART when it works. As the
robots’ number increases, its time increases but SMART
manages to solve most problems under 10s with fewer
manipulation action instants and better solution costs.
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Fig.7. A non-monotone in-
place swap demonstration.



7.4 Non-monotone Demonstration

Fig [/| shows a problem that involves in-place swapping of two objects. The problem
neccesitates both the use of a buffer, as well as multiple interactions between an object
and arm. This lies in the class of efficiently solvable problems that are non-monotone
(and satisfy the object non-interactivity condition). On average using SMART discovered
an initial solution in 3.41s, succeeding every time with a 8 step solution spanning 34.6s.

8 Discussion

The current work demonstrates the connection between Synchronized Multi-Arm Re-
arrangement (SMAR) problems and Multi-Agent Path Finding (MAPF). The link corre-
sponds to an object-centric mode graph with capacity constraints, for which there are
efficient solvers. These MAPF solutions are shown to be beneficial as heuristics in large
scale SMAR problems involving 9 arms and 4 objects, as well as a non-monotone demon-
stration. There are various aspects of the mode-graph that can be explored in future
work. The removal of the object-non interactivity condition to encode other constraints,
or dealing with mobile manipulators can lead to efficient solutions to complex non-
monotone challenges. Improvements to the task planner can also allow removing the
synchronization assumption.Increasing the number of objects has a multiplicative ef-
fect on the depth of the forward search tree of actions. It is interesting to further study
how larger-scale problem instances in term of the number of objects can be solved effi-
ciently. The current work motivates towards these intriguing avenues of future research.
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Appendix

Sketch of Properties

This section provides a sketch of the theoretical properties of the method proposed in
the current work. At a high-level, the proposed approach uses an underlying framework
for integrated task and motion planning based on previous work [25I3513|]. This frame-
work retains its completeness guarantees for the proposed formulation. A contribution
of the current work is to address instances of multi-arm multi-object task planning prob-
lems where a heuristic can be computed efficiently and provides useful guidance in the
search process. The aforementioned heuristic is obtained by casting the object rear-
rangement problem to an analogous instance of a multi-agent path finding problem on a
graph. Previous work [37] has studied this problem to demonstrate its correspondence
to a multi-commodity network flow problem with its own inherent problem-class com-
plexity.

Properties of integrated task and motion planning  The underlying task and mo-
tion planning framework outlined in the Algorithm SMART is closely based on previ-
ously described integrated frameworks [25I35113]], which:

— samples transitions - e.g, object picks, handoffs, and placements;

— builds a forward search tree over possible combinations of transitions - object
grasps, handoffs, and placements;

— and constructs a roadmap to connect each pair of consecutive transitions.

Such pipelines has been shown to be probabilistically complete [13]], and under
certain assumptions regarding the transitions and underlying roadmaps, also asymptoti-
cally optimal [35]]. Specifically, more recent analysis [26] studies the specific conditions
for arguing asymptotic optimality for such task and motion planning algorithms.

One of the modifications when applying this principle to multi-arm problems is the
decomposition of the multi-arm roadmaps into constituent roadmaps of each arm, and
searching over their tensor product [27]. This operation has also been proven to main-
tain the completeness and optimality properties of the underlying constituent roadmaps.

Algorithm SMART satisfies the requirements for asymptotic optimality by sampling
additional transitions for a fraction of the iterations. The select subroutine gives every
adjacent transition an opportunity to be selected in the task planning search tree, while
goal biasing with the contributed heuristic. The motions between transitions operate
over the fensor structure defined over all the arms.

Properties of the computed heuristic =~ The heuristic utilized to bias exploitation of
actions or transition sequences is derived from solving a simpler variant of the problem
that involves only the objects, and considers picks, handoffs and placement actions.
The current work shows that this can be cast as a multi-agent path finding problem by
treating the objects as agents, and their motions over a discrete graph structure defined
in the current work as the capacity constrained object-centric mode graph. The current
work also proves that this heuristic is action-optimal, and motion planning for the arms



on top of these actions cannot decrease the number of actions involved in the solution.
This renders the MAPF heuristic admissible.

In terms of the properties of the corresponding MAPF problem, previous work [37]]
has provided an ILP formulation that achieves complete and efficient solutions to the
NP-Hard problem instance. The current work adds capacity constraints to the formula-
tion to make the solutions amenable to the task planning domain. It is straightforward
to expand upon the original analysis for unit capacities at the vertices to argue similar
complexity results. Other lines of work [33]] have studied capacity constraints from
the point of view of SAT solvers and arrived at similar arguments. These earlier efforts
guided the solution proposed in the current paper, while adhering to a linear program-
ming framework [37].
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