Skip to main content

Scalable Low-Rank Semidefinite Programming for Certifiably Correct Machine Perception

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIV (WAFR 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 17))

Included in the following conference series:

Abstract

Semidefinite relaxation has recently emerged as a powerful technique for machine perception, in many cases enabling the recovery of certifiably globally optimal solutions of generally-intractable nonconvex estimation problems. However, the high computational cost of standard interior-point methods for semidefinite optimization prevents these algorithms from scaling effectively to the high-dimensional problems frequently encountered in machine perception tasks. To address this challenge, in this paper we present an efficient algorithm for solving the large-scale but low-rank semidefinite relaxations that underpin current certifiably correct machine perception methods. Our algorithm preserves the scalability of current state-of-the-art low-rank semidefinite optimizers that are custom-built for the geometry of specific machine perception problems, but generalizes to a broad class of convex programs over spectrahedral sets without the need for detailed manual analysis or design. The result is an easy-to-use, general-purpose computational tool capable of supporting the development and deployment of a broad class of novel certifiably correct machine perception methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, it requires knowledge of an efficiently-computable retraction on that manifold [2].

  2. 2.

    In coordinates, \(([x]_{+})_i = \max (x_i, 0)\) for all \(i \in [n]\).

  3. 3.

    Here the LICQ is necessary to ensure that the Lagrange multipliers \((\lambda , \gamma )\) associated with Y are unique [44]. Without this condition, there could conceivably exist some other set of multipliers \((\lambda ', \gamma ') \in \mathbb {R}^{m_1} \times \mathbb {R}_{+}^{m_2}\) (that we do not have in hand) satisfying (8) and also (5), in which case X would be optimal for Problem 1. However, any multipliers satisfying (5) for \(X = YY^\mathsf {T}\) satisfy (8) a fortiori. Therefore, the uniqueness of \((\lambda , \gamma )\) implies that there cannot exist alternative multipliers \((\lambda ', \gamma ')\) satisfying (5), and therefore that X is not optimal (by Theorem 1).

  4. 4.

    More precisely, reference [14] studied (19) and (20) for the case of equality constraints (\(\varphi (X) = \Vert A(X) - b \Vert ^2\)), and derived the corresponding specialization of Theorem 5(a).

  5. 5.

    Note that the argument used to prove Theorem 4 does not directly apply to (19) and (20) because the inequality term \(\Vert \left[ \mathcal {B}(X) - u\right] _{+} \Vert ^2\) renders \(\varphi \) only \(C^1\). In the supplementary material, we show how to derive a \(C^\infty \) reformulation of (19) and (20).

  6. 6.

    We do not apply Algorithm 1 to (24) because (as described in Sect. 4.1) the data matrix \(\tilde{Q}\) is dense, and Algorithm 1 does not implement the specialized linear-algebraic subroutines developed in [33, 35, 36] that enable efficient operations with \(\tilde{Q}\).

  7. 7.

    Available at https://github.com/david-m-rosen/LowRankSDP.

  8. 8.

    Version 3.13.1, available at https://github.com/coin-or/Ipopt.

  9. 9.

    Available at https://spectralib.org/.

  10. 10.

    Version 6.2, available at https://www.pardiso-project.org/.

  11. 11.

    Available at https://github.com/david-m-rosen/SE-Sync.

  12. 12.

    This termination criterion only affects Alg1-T, since SE-Sync-S and SE-Sync-T employ Riemannian optimization methods that automatically enforce feasibility.

  13. 13.

    Note that the sum of the optimization and minimum-eigenvalue computation times is not equal to the total elapsed time for SE-Sync-S and SE-Sync-T because these algorithms also construct and cache certain sparse matrix factorizations [33, 36].

References

  1. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton, NJ, USA (2008)

    Book  Google Scholar 

  2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)

    Book  Google Scholar 

  3. Bandeira, A.S.: A note on probably certifiably correct algorithms. Comptes Rendus Math. 354(3), 329–333 (2016)

    Article  MathSciNet  Google Scholar 

  4. Boumal, N., Voroninski, V., Bandeira, A.S.: The non-convex Burer-Monteiro approach works on smooth semidefinite programs. In: Advances in Neural Information Processing Systems (NIPS), pp. 2757–2765, December 2016

    Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Briales, J., Gonzalez-Jimenez, J.: Cartan-Sync: fast and global SE(d)-synchronization. Robot. Autom. Lett. 2(4), 2127–2134 (2017)

    Article  Google Scholar 

  7. Briales, J., Kneip, L., Gonzalez-Jimenez, J.: A certifiably globally optimal solution to the non-minimal relative pose problem. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 145–154 (2018)

    Google Scholar 

  8. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95, 329–357 (2003)

    Article  MathSciNet  Google Scholar 

  9. Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite programming. Math. Program. 103, 427–444 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  11. Carlone, L., Rosen, D.M., Calafiore, G., Leonard, J.J., Dellaert, F.: Lagrangian duality in 3D SLAM: verification techniques and optimal solutions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, September 2015

    Google Scholar 

  12. Carlone, L., Tron, R., Daniilidis, K., Dellaert, F.: Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, pp. 4597–4605, May 2015

    Google Scholar 

  13. Cifuentes, D.: On the Burer-Monteiro method for general semidefinite programs. arXiv preprint arXiv:1904.07147 (2019)

  14. Cifuentes, D., Moitra, A.: Polynomial time guarantees for the Burer-Monteiro method. arXiv preprint arXiv:1912.01745 (2019)

  15. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region methods. The Society for Industrial and Applied Mathematics (SIAM) (2000)

    Google Scholar 

  16. Eriksson, A., Olsson, C., Kahl, F., Chin, T.-J.: Rotation averaging and strong duality. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 127–135, June 2018

    Google Scholar 

  17. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., D’Arpino, C.P., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P., Posa, M., Valenzuela, A., Yu, K.-T., Shah, J., Iagnemma, K., Tedrake, R., Teller, S.: An architecture for online affordance-based perception and whole-body planning. Intl. J. Robot. Res. 32(2), 229–254 (2015)

    Google Scholar 

  18. Fan, T., Wang, H., Rubenstein, M., Murphey, T.: Efficient and guaranteed planar pose graph optimization using the complex number representation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 1904–1911, November 2019

    Google Scholar 

  19. Gallier, J.: The Schur complement and symmetric positive semidefinite (and definite) matrices. unpublished note, December 2010. http://www.cis.upenn.edu/~jean/schur-comp.pdf

  20. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    Article  Google Scholar 

  21. Hu, S., Carlone, L.: Accelerated inference in Markov random fields via smooth Riemannian optimization. Robot. Autom. Lett. 4(2), 1295–1302 (2019)

    Article  Google Scholar 

  22. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., Abeles, P., Stephen, D., Mertins, N., Lesman, A., Carff, J., Rifenburgh, W., Kaveti, P., Straatman, W., Smith, J., Griffioen, M., Layton, B., de Boer, T., Koolen, T., Neuhaus, P., Pratt, J.: Team IHMC’s lessons learned from the DARPA robotics challenge trials. Intl. J. Robot. Res. 32(2), 192–208 (2015)

    Google Scholar 

  23. Journée, M., Bach, F., Absil, P.-A., Sepulchre, R.: Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim. 20(5), 2327–2351 (2010)

    Article  MathSciNet  Google Scholar 

  24. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: Incremental smoothing and mapping using the Bayes tree. Intl. J. Robot. Res. 31(2), 216–235 (2012)

    Article  Google Scholar 

  25. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 3607–3613, May 2011

    Google Scholar 

  26. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Maheloni, K., Moyer, K., Jones, T., Buckley, R., Antone, M., Galejs, R., Krishnamurthy, S., Williams, J.: A perception-driven autonomous urban vehicle. Intl. J. Robot. Res. 25(10), 727–774 (2008)

    Google Scholar 

  27. Majumdar, A., Hall, G., Ahmadi, A.A.: Recent scalability improvements for semidefinite programming with applications in machine learning, control and robotics. Annu. Rev. Control Robot. Auton. Syst. 3, 331–360 (2020)

    Article  Google Scholar 

  28. Mandel, J.: On block diagonal and Schur complement preconditioning. Numerische Mathematik 58(1), 79–93 (1990)

    Article  MathSciNet  Google Scholar 

  29. Mangelson, J.G., Liu, J., Eustice, R.M., Vasudevan, R.: Guaranteed globally optimal planar pose graph and landmark SLAM via sparse-bounded sums-of-squares programming. In: IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 9306–9312, May 2019

    Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Science+Business Media, New York (2006)

    MATH  Google Scholar 

  31. Rockafellar, J.T., Wets, R.J.-B.: Variational Analysis. Springer Science+Business Media, (2009)

    Google Scholar 

  32. Rosen, D.M.: Towards provably robust machine perception. Presented at Robotics: Science and Systems (RSS) in the workshop “RSS Pioneers", June 2019

    Google Scholar 

  33. Rosen, D.M., Carlone, L.: Computational enhancements for certifiably correct SLAM. In: Presented at the International Conference on Intelligent Robots and Systems (IROS) in the workshop “Introspective Methods for Reliable Autonomy", September 2017

    Google Scholar 

  34. Rosen, D.M., Kaess, M., Leonard, J.J.: RISE: an incremental trust-region method for robust online sparse least-squares estimation. IEEE Trans. Robot. 30(5), 1091–1108 (2014)

    Article  Google Scholar 

  35. Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: A certifiably correct algorithm for synchronization over the special Euclidean group. In: International Workshop on the Algorithmic Foundations of Robotics (WAFR), San Francisco, CA (2016)

    Google Scholar 

  36. Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: SE-Sync: a certifiably correct algorithm for synchronization over the special Euclidean group. Intl. J. Robot. Res. 38(2–3), 95–125 (2019)

    Article  Google Scholar 

  37. Russel, S., Norvig, P.: Artifical Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA (2010)

    Google Scholar 

  38. Stengel, R.F.: Optimal Control and Estimation. Dover Publications (1994)

    Google Scholar 

  39. Taylor, R.H.: A perspective on medical robotics. Proc. IEEE 94(9), 1652–1664 (2006)

    Article  Google Scholar 

  40. Todd, M.J.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)

    Article  MathSciNet  Google Scholar 

  41. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment – a modern synthesis. In: Triggs, W., Zisserman, A., Szeliski, R., (eds.), Vision Algorithms: Theory and Practice volume 1883 of Lecture Notes in Computer Science, pp. 298–372. Springer Verlag (2000)

    Google Scholar 

  42. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  43. Vlasic, B., Boudette, N.E.: As U.S. investigates fatal Tesla crash, company defends Autopilot system. The New York Times, 12 July 2016

    Google Scholar 

  44. Wachsmuth, W.: On LICQ and the uniqueness of Lagrange multipliers. Oper. Res. Lett. 41, 78–80 (2013)

    Article  MathSciNet  Google Scholar 

  45. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Rosen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 206 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosen, D.M. (2021). Scalable Low-Rank Semidefinite Programming for Certifiably Correct Machine Perception. In: LaValle, S.M., Lin, M., Ojala, T., Shell, D., Yu, J. (eds) Algorithmic Foundations of Robotics XIV. WAFR 2020. Springer Proceedings in Advanced Robotics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-66723-8_33

Download citation

Publish with us

Policies and ethics