Skip to main content

hxtorch: PyTorch for BrainScaleS-2

Perceptrons on Analog Neuromorphic Hardware

  • Conference paper
  • First Online:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2020, IoT Streams 2020)

Abstract

We present software facilitating the usage of the BrainScaleS-2 analog neuromorphic hardware system as an inference accelerator for artificial neural networks. The hardware is transparently integrated into the PyTorch machine learning framework. In particular, we support vector-matrix multiplications and convolutions; corresponding software-based autograd functionality is provided for hardware-in-the-loop training. The software provides support for automatic partitioning and scheduling of neural networks onto one or multiple chips. We discuss the implementation including optimizations, analyze runtime overhead, measure performance and evaluate the results in terms of the hardware design limitations. As an application of the introduced framework, we present a model that classifies activities of daily living with smartphone sensor data.

P. Spilger and E. Müller—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, H.: The State of Machine Learning Frameworks in 2019. The Gradient (2019)

    Google Scholar 

  2. Weis, J., et al.: Inference with artificial neural networks on analog neuromorphic hardware. In: Gama, J., et al. (eds.) ITEM 2020/IoT Streams 2020. CCIS, vol. 1325, pp. 201–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66770-2_15

  3. Wunderlich, T., et al.: Demonstrating advantages of neuromorphic computation: a pilot study. Front. Neurosci. 13, 260 (2019). https://doi.org/10.3389/fnins.2019.00260

    Article  Google Scholar 

  4. Schemmel, J., Billaudelle, S., Dauer, P., Weis, J.: Accelerated analog neuromorphic computing. arXiv preprint (2020). arXiv: 2003.11996 [cs.NE]

  5. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  6. Müller, E., et al.: The operating system of the neuromorphic BrainScaleS-1 system. arXiv preprint (2020). arXiv: 2003.13749 [cs.NE]

  7. Müller, E., et al.: Extending BrainScaleS OS for BrainScaleS-2. arXiv preprint (2020). arXiv: 2003.13750 [cs.NE]

  8. Schmitt, S., et al.: Classification With deep neural networks on an accelerated analog neuromorphic system. In: Proceedings of the 2017 IEEE International Joint Conference on Neural Networks (2017). https://doi.org/10.1109/IJCNN.2017.7966125

  9. Cramer, B., et al.: Training spiking multi-layer networks with surrogate gradients on an analog neuromorphic substrate. arXiv preprint (2020). arXiv: 2006.07239 [cs.NE]

  10. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann (2013)

    Google Scholar 

  11. Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)

    Article  Google Scholar 

  12. Le Gallo, M., et al.: Mixed-precision in-memory computing. Nat. Electron. 1(4), 246–253 (2018). https://doi.org/10.1038/s41928-018-0054-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Spilger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spilger, P. et al. (2020). hxtorch: PyTorch for BrainScaleS-2. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66770-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66769-6

  • Online ISBN: 978-3-030-66770-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics