Skip to main content

Time to Learn: Temporal Accelerators as an Embedded Deep Neural Network Platform

  • Conference paper
  • First Online:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2020, IoT Streams 2020)

Abstract

Embedded Field-Programmable Gate Arrays (FPGAs) provide an efficient and flexible hardware platform to deploy highly optimised Deep Neural Network (DNN) accelerators. However, the limited area of embedded FPGAs restricts the degree of complexity of a DNN accelerator that can be deployed on them. Commonly an accelerator’s complexity is reduced to fit smaller FPGAs, often at the cost of significant redesign overhead. In this paper we present an alternative to this, which we call Temporal Accelerators. The main idea is to split an accelerator into smaller components, which are then executed by an FPGA sequentially. To do so, the FPGA is reconfigured multiple times during the execution of the accelerator. With this idea, we increase the available area of the FPGA ‘over time’. We show that modern FPGAs can reconfigure efficiently enough to achieve equally fast and energy efficient accelerators while using more cost efficient FPGAs. We develop and evaluate a Temporal Accelerator implementing an 1D Convolution Neural Network for detecting anomalies in ECG heart data. Our accelerator is deployed on a Xilinx Spartan 7 XC7S15. We compare it to a conventional implementation on the larger Xilinx Spartan 7 XC7S25. Our solution requires 9.06% less time to execute and uses 12.81% less energy while using an FPGA that is 35% cheaper.

The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the KI-Sprung LUTNet project (project number 16ES1125) as well as the KI-LiveS project (project number 895 01IS19068A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger, A., Qian, C., Schiele, G., Helms, D.: An embedded CNN implementation for on-device ECG analysis. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (2020)

    Google Scholar 

  2. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015)

  3. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50\(\times \) fewer parameters and \(<\)0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  4. McDanel, B., Teerapittayanon, S., Kung, H.T.: Embedded binarized neural networks. arXiv preprint arXiv:1709.02260 (2017)

  5. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  6. Wang, E., Davis, J.J., Cheung, P.Y., Constantinides, G.A.: Lutnet: rethinking inference in FPGA soft logic. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE (2019)

    Google Scholar 

  7. Roth,W., et al.: Resource-efficient neural networks for embedded systems. arXiv preprint arXiv:2001.03048 (2020)

  8. Hassibi, B., Stork, D.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing System (1993)

    Google Scholar 

  9. Yang, T.J., Chen, Y.H., Sze, V.: Designing energy-efficient convolutional neural networks using energy-aware pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  10. Jouppi, N., Young, C., Patil, N., Patterson, D.: Motivation for and evaluation of the first tensor processing unit. IEEE Micro 38(3), 10–19 (2018)

    Article  Google Scholar 

  11. Biswas, A., Chandrakasan, A.P.: CONV-SRAM: an energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks. IEEE J. Solid-State Circ. 54(1), 217–230 (2018)

    Article  Google Scholar 

  12. Venieris, S.I., ouganis, C.S.: fpgaConvNet: a framework for mapping convolutional neural networks on FPGAs. In: 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) (2016)

    Google Scholar 

  13. Burger, A., Cichiwskyj, C., Schiele, G.: Elastic nodes for the Internet of Things: a middleware-based approach. In: Proceedings - 2017 IEEE International Conference on Autonomic Computing, ICAC 2017 (2017)

    Google Scholar 

  14. Cordone, R., Redaelli, F., Redaelli, M.A., Santambrogio, M.D., Sciuto, D.: Partitioning and scheduling of task graphs on partially dynamically reconfigurable FPGAs. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 28(5), 662–675 (2009)

    Google Scholar 

  15. Knocke, P., Gorgen, R., Walter, J., Helms, D., Nebel, W.: Using early power and timing estimations of massively heterogeneous computation platforms to create optimized HPC applications. In: Proceedings - 2014 International Conference on Embedded and Ubiquitous Computing, EUC 2014, 609757 (2014)

    Google Scholar 

  16. Schiele, G., Burger, A., Cichiwskyj, C.: The elastic node: an experimentation platform for hardware accelerator research in the Internet of Things. In: 2019 IEEE International Conference on Autonomic Computing (ICAC) (2019)

    Google Scholar 

  17. Burger, A., Schiele, G.: Demo abstract: deep learning on an elastic node for the Internet of Things. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (2018)

    Google Scholar 

  18. Xilinx. 7 Series FPGAs Configuration User Guide - UG470 (2018)

    Google Scholar 

  19. Xilinx. 7 Series FPGAs Data Sheet: Overview (2018)

    Google Scholar 

  20. Xilinx. Spartan-7 FPGAs Data Sheet: DC and AC Switching Characteristics (2019)

    Google Scholar 

  21. Xilinx. Xilinx Power Estimator (XPE) (2020)

    Google Scholar 

  22. Xilinx. Power Methodology Guide - UG786 (v14.5) (2018)

    Google Scholar 

  23. Inc. Micron Technology. Micron Flash Memory Support for Xilinx Platforms (2019)

    Google Scholar 

  24. Mouser. Electronic Components Distributor - Mouser Electronics Germany (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Cichiwskyj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cichiwskyj, C., Qian, C., Schiele, G. (2020). Time to Learn: Temporal Accelerators as an Embedded Deep Neural Network Platform. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66770-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66769-6

  • Online ISBN: 978-3-030-66770-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics