Skip to main content

Challenges of Stream Learning for Predictive Maintenance in the Railway Sector

  • Conference paper
  • First Online:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2020, IoT Streams 2020)

Abstract

Smart trains nowadays are equipped with sensors that generate an abundance of data during operation. Such data may, directly or indirectly, reflect the health state of the trains. Thus, it is of interest to analyze these data in a timely manner, preferably on-the-fly as they are being generated, to make maintenance operations more proactive and efficient. This paper provides a brief overview of predictive maintenance and stream learning, with the primary goal of leveraging stream learning in order to enhance maintenance operations in the railway sector. We justify the applicability and promising benefits of stream learning via the example of a real-world railway dataset of the train doors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Heavy calculations can be tolerated if we have powerful machines. This weakness concerns the limitation of the technology rather than the limitation of the algorithm.

References

  1. Accorsi, R., Manzini, R., Pascarella, P., Patella, M., Sassi, S.: Data mining and machine learning for condition-based maintenance. Procedia Manuf. 11, 1153–1161 (2017)

    Article  Google Scholar 

  2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 81–92. VLDB Endowment, Berlin, Germany (2003)

    Google Scholar 

  3. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: Proceedings of the 30th International Conference on Very Large Data Bases, vol. 30, pp. 852–863. VLDB Endowment (2004)

    Google Scholar 

  4. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)

    Article  Google Scholar 

  5. Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) Machine Learning and Knowledge Discovery in Databases, pp. 480–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_31

    Chapter  Google Scholar 

  6. Amaya, E.J., Alvares, A.J.: SIMPREBAL: an expert system for real-time fault diagnosis of hydrogenerators machinery. In: 2010 IEEE 15th Conference on Emerging Technologies Factory Automation (ETFA 2010), pp. 1–8 (2010)

    Google Scholar 

  7. Amruthnath, N., Gupta, T.: Fault class prediction in unsupervised learning using model-based clustering approach. In: 2018 International Conference on Information and Computer Technologies (ICICT), pp. 5–12 (2018)

    Google Scholar 

  8. Bansal, D., Evans, D.J., Jones, B.: A real-time predictive maintenance system for machine systems. Int. J. Mach. Tools Manuf. 44, 759–766 (2004)

    Article  Google Scholar 

  9. Baptista, M., Sankararaman, S., de Medeiros, I.P., Nascimento, C., Prendinger, H., Henriques, E.M.: Forecasting fault events for predictive maintenance using data-driven techniques and arma modeling. Comput. Ind. Eng. 115, 41–53 (2018)

    Article  Google Scholar 

  10. Baraldi, P., Mangili, F., Zio, E.: A kalman filter-based ensemble approach with application to turbine creep prognostics. IEEE Trans. Reliab. 61, 966–977 (2012)

    Article  Google Scholar 

  11. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 7th SIAM International Conference on Data Mining (2007)

    Google Scholar 

  12. Canizo, M., Onieva, E., Conde, A., Charramendieta, S., Trujillo, S.: Real-time predictive maintenance for wind turbines using Big Data frameworks. In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 70–77 (2017)

    Google Scholar 

  13. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the Sixth SIAM International Conference on Data Mining, April 20–22, 2006, Bethesda, MD, USA, vol. 2006 (2006)

    Google Scholar 

  14. Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R.d.P., Basto, J.P., Alcalá, S.G.S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137 (2019)

    Google Scholar 

  15. Chande, P., Tokekar, S.: Expert-based maintenance: a study of its effectiveness. IEEE Trans. Reliab. 47, 53–58 (1998)

    Article  Google Scholar 

  16. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. Association for Computing Machinery, San Jose (2007)

    Google Scholar 

  17. Cubillo, A., Perinpanayagam, S., Esperon-Miguez, M.: A review of physics-based models in prognostics: application to gears and bearings of rotating machinery. Adv. Mech. Eng. 8(8) (2016)

    Google Scholar 

  18. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, Boston, Massachusetts (2000)

    Google Scholar 

  19. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46, 44:1–44:37 (2014)

    Google Scholar 

  20. Heimes, F.O.: Recurrent neural networks for remaining useful life estimation. In: International Conference on Prognostics and Health Management, pp. 1–6 (2008)

    Google Scholar 

  21. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Mining Knowl. Discov. 23, 128–168 (2011)

    Article  MathSciNet  Google Scholar 

  22. Korvesis, P., Besseau, S., Vazirgiannis, M.: Predictive maintenance in aviation: failure prediction from post-flight reports. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1414–1422 (2018)

    Google Scholar 

  23. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A.: Improving rail network velocity: a machine learning approach to predictive maintenance. Transp. Res. Part C: Emerg. Technol. 45, 17–26 (2014)

    Article  Google Scholar 

  24. Liang, Z., Parlikad, A.: A Markovian model for power transformer maintenance. Int. J. Electr. Power Energy Syst. 99, 175–182 (2018)

    Article  Google Scholar 

  25. Liao, H., Elsayed, E.A., Chan, L.Y.: Maintenance of continuously monitored degrading systems. Eur. J. Oper. Res. 175, 821–835 (2006)

    Article  Google Scholar 

  26. Manzoor, E., Lamba, H., Akoglu, L.: xStream: outlier detection in feature-evolving data streams. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1963–1972. Association for Computing Machinery, London, United Kingdom (2018)

    Google Scholar 

  27. van Noortwijk, J.M.: A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Safety 94, 2–21 (2009)

    Article  Google Scholar 

  28. Oppenheimer, C.H., Loparo, K.A.: Physically based diagnosis and prognosis of cracked rotor shafts. In: Willett, P.K., Kirubarajan, T. (eds.) Component and Systems Diagnostics, Prognostics, and Health Management II, vol. 4733, pp. 122–132. International Society for Optics and Photonics, SPIE (2002)

    Chapter  Google Scholar 

  29. Naveen Kumar, P., Sakthivel, G., Jegadeeshwaran, R., Sivakumar, R., Saravana Kumar, D.: Vibration based IC engine fault diagnosis using tree family classifiers - a machine learning approach. In: 2019 IEEE International Symposium on Smart Electronic Systems (iSES), pp. 225–228 (2019)

    Google Scholar 

  30. Pau, L.F.: Survey of expert systems for fault detection, test generation and maintenance. Expert Syst. 3, 100–110 (2007)

    Article  Google Scholar 

  31. Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50(1), 297–313 (2010)

    Article  Google Scholar 

  32. Qiu, J., Seth, B.B., Liang, S.Y., Chang, C.: Damage mechanics approach for bearing lifetime prognostics. Mech. Syst. Sig. Process. 16, 817–829 (2002)

    Article  Google Scholar 

  33. Sahal, R., Breslin, J.G., Ali, M.I.: Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. J. Manuf. Syst. 54, 138–151 (2020)

    Google Scholar 

  34. Su, C.J., Huang, S.F.: Real-time big data analytics for hard disk drive predictive maintenance. Comput. Electr. Eng. 71, 93–101 (2018)

    Article  Google Scholar 

  35. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3), 812–820 (2015)

    Article  Google Scholar 

  36. Tang, J.Z., Wang, Q.F.: Online fault diagnosis and prevention expert system for dredgers. Expert Syst. Appl. 34, 511–521 (2008)

    Article  Google Scholar 

  37. Tinga, T.: Principles of Loads and Failure Mechanisms. Applications in Maintenance, Reliability and Design. Springer Series in Reliability Engineering, Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-4917-0

  38. Turgis, F., Auder, P., Coutadeur, Q., Verdun, C.: Industrialization of condition based maintenance for complex systems in a complex maintenance environment, example of NAT. In: 12th World Congress on Railway Research (2019)

    Google Scholar 

  39. Yang, C., Létourneau, S.: Learning to predict train wheel failures. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 516–525. Association for Computing Machinery (2005)

    Google Scholar 

  40. Zhang, Z., Si, X., Hu, C., Lei, Y.: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. Eur. J. Oper. Res. 271, 775–796 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zhao, P., Kurihara, M., Tanaka, J., Noda, T., Chikuma, S., Suzuki, T.: Advanced correlation-based anomaly detection method for predictive maintenance. In: IEEE International Conference on Prognostics and Health Management, pp. 78–83 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minh Huong Le Nguyen , Fabien Turgis , Pierre-Emmanuel Fayemi or Albert Bifet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Nguyen, M.H., Turgis, F., Fayemi, PE., Bifet, A. (2020). Challenges of Stream Learning for Predictive Maintenance in the Railway Sector. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66770-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66769-6

  • Online ISBN: 978-3-030-66770-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics