Skip to main content

Dynamic Complexity Tuning for Hardware-Aware Probabilistic Circuits

  • Conference paper
  • First Online:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2020, IoT Streams 2020)

Abstract

Probabilistic inference is a well suited approach to address the challenges of resource constrained embedded application scenarios. In particular, probabilistic models learned generatively are robust to missing data and are capable of encoding domain knowledge seamlessly. These traits have been leveraged to propose hardware-aware probabilistic learning and inference strategies that induce Pareto optimal accuracy versus resource consumption trade-offs. This paper proposes a model-complexity tuning strategy that relies on ensembles of probabilistic classifiers to identify the difficulty of the classification task on a given instance. It then dynamically switches to a higher or lower complexity setting accordingly. The strategy is evaluated on an embedded human activity recognition scenario and demonstrates a superior performance when compared to the Pareto-optimal trade-off obtained when the ensembles are deployed statically, especially in low cost regions of the trade-off space. This makes the strategy amenable to embedded computing scenarios, where one of the main constraints towards always-on functionality are the device’s strict resource constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is known as context specific independence [27].

  2. 2.

    The models learned with the discriminative bias tend to have a higher classification accuracy than those learned generatively, so the ensembles are constructed on the basis of cost similarity.

  3. 3.

    The overhead is in terms of the additional cost from evaluating classifier ensembles multiple times. It is assumed that there is no time overhead or latency increase.

References

  1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2013)

    Google Scholar 

  2. Choi, Y., Van den Broeck, G.: On robust trimming of Bayesian network classifiers. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI) (2018)

    Google Scholar 

  3. Choi, Y., Vergari, A., Van den Broeck, G.: Lecture notes: Probabilistic circuits: Representation and inference (2020). http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf

  4. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM (JACM) 50(3), 280–305 (2003)

    Article  MathSciNet  Google Scholar 

  5. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI) (1993)

    Google Scholar 

  6. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. J. Mach. Learn. 29(2), 131–163 (1997)

    Article  Google Scholar 

  7. Galindez Olascoaga, L.I., Meert, W., Shah, N., Van den Broeck, G., Verhelst, M.: Discriminative bias for learning probabilistic sentential decision diagrams. In: Proceedings of the Symposium on Intelligent Data Analysis (IDA) (2020)

    Google Scholar 

  8. Galindez Olascoaga, L.I., Meert, W., Shah, N., Verhelst, M., Van den Broeck, G.: Towards hardware-aware tractable learning of probabilistic models. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 13726–13736 (2019)

    Google Scholar 

  9. Giraldo, J., O’Connor, C., Verhelst, M.: Efficient keyword spotting through hardware-aware conditional execution of deep neural networks. In: 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2019)

    Google Scholar 

  10. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. Ph.D. thesis, University of Waikato, Hamilton, New Zealand (1998)

    Google Scholar 

  11. Inoue, H.: Adaptive ensemble prediction for deep neural networks based on confidence level. In: The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1284–1293. PMLR (2019)

    Google Scholar 

  12. Karbachevsky, A., et al.: Hcm: hardware-aware complexity metric for neural network architectures. arXiv preprint arXiv:2004.08906 (2020)

  13. Khosravi, P., Choi, Y., Liang, Y., Vergari, A., Van den Broeck, G.: On tractable computation of expected predictions. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 11169–11180 (2019)

    Google Scholar 

  14. Khosravi, P., Vergari, A., Choi, Y., Liang, Y., Van den Broeck, G.: Handling missing data in decision trees: a probabilistic approach. In: The Art of Learning with Missing Values Workshop at ICML (Artemiss) (2020)

    Google Scholar 

  15. Kisa, D., Van den Broeck, G., Choi, A., Darwiche, A.: Probabilistic sentential decision diagrams. In: International Conference on the Principles of Knowledge Representation and Reasoning (2014)

    Google Scholar 

  16. Liang, Y., Bekker, J., Van den Broeck, G.: Learning the structure of probabilistic sentential decision diagrams. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) (2017)

    Google Scholar 

  17. Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency trade-offs by selective execution. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  18. Perello-Nieto, M., Telmo De Menezes Filho, E.S., Kull, M., Flach, P.: Background check: a general technique to build more reliable and versatile classifiers. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1143–1148. IEEE (2016)

    Google Scholar 

  19. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE (2011)

    Google Scholar 

  20. Shah, N., Galindez Olascoaga, L.I., Meert, W., Verhelst, M.: Problp: A framework for low-precision probabilistic inference. In: Proceedings of the 56th Annual Design Automation Conference (DAC) 2019, pp. 1–6 (2019)

    Google Scholar 

  21. Shah, N.A., Galindez Olascoaga, L.I., Meert, W., Verhelst, M.: Acceleration of probabilistic reasoning through custom processor architecture. In: 2020 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 322–325 (2020)

    Google Scholar 

  22. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  23. Verachtert, A., Blockeel, H., Davis, J.: Dynamic early stopping for naive Bayes. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), vol. 2016, pp. 2082–2088. AAAI Press (2016)

    Google Scholar 

  24. Verhelst, M., Murmann, B.: Machine learning at the edge. In: NANO-CHIPS 2030, pp. 293–322. Springer (2020)

    Google Scholar 

  25. Vlasselaer, J., Meert, W., Verhelst, M.: Towards resource-efficient classifiers for always-on monitoring. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 305–321. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_19

    Chapter  Google Scholar 

  26. Weber, L., Sommer, L., Oppermann, J., Molina, A., Kersting, K., Koch, A.: Resource-efficient logarithmic number scale arithmetic for SPN inference on FPGAs. In: 2019 International Conference on Field-Programmable Technology (ICFPT), pp. 251–254. IEEE (2019)

    Google Scholar 

  27. Zhang, N.L., Poole, D.: On the role of context-specific independence in probabilistic inference. In: 16th International Joint Conference on Artificial Intelligence, IJCAI 1999, Stockholm, Sweden, vol. 2, p. 1288 (1999)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the EU-ERC Project Re-SENSE grant ERC-2016-STG-71503, the “Onderzoeksprogramma Artificiële Intelligentie Vlaanderen” programme from the Flemish Government, and a gift from Intel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura I. Galindez Olascoaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galindez Olascoaga, L.I., Meert, W., Shah, N., Verhelst, M. (2020). Dynamic Complexity Tuning for Hardware-Aware Probabilistic Circuits. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66770-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66769-6

  • Online ISBN: 978-3-030-66770-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics