Skip to main content

Explainable Process Monitoring Based on Class Activation Map: Garbage In, Garbage Out

  • Conference paper
  • First Online:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2020, IoT Streams 2020)

Abstract

Process monitoring at industrial sites contributes to system stability by detecting and diagnosing unexpected changes in a system. Today, as the infrastructure of industrial sites is advanced due to the development of communication technology, various and vast amounts of data are generated, and the importance of a methodology to effectively monitor these data to diagnose a system is increasing daily. As a deep neural network-based methodology can effectively extract information from a large amount of data, methods have been proposed to monitor processes using this methodology to detect any system abnormalities. Neural network-based process monitoring is effective in detecting anomalies but has difficulty in diagnosing due to the limitations of the black-box model. Therefore, this paper proposes a process monitoring framework that can detect and diagnose anomalies. The proposed framework performs post-processing based on the class activation map to perform the diagnosis of data that are considered outliers. To verify the performance of the proposed method, experiments were conducted using industrial public motor datasets, demonstrating that the proposed method can effectively detect and diagnose abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ku, W., Storer, R.H., Georgakis, C.: Disturbance detection and isolation by dynamic principal component analysis. Chemometr. Intell. Lab. Syst. 30(1), 179–196 (1995)

    Article  Google Scholar 

  2. Lee, S., Kwak, M., Tsui, K.-L., Kim, S.B.: Process monitoring using variational autoencoder for high-dimensional nonlinear processes. Eng. Appl. Artif. Intell. 83, 13–27 (2019)

    Article  Google Scholar 

  3. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018)

    Article  Google Scholar 

  6. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–237 (2019)

    Article  Google Scholar 

  7. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929. IEEE (2016)

    Google Scholar 

  8. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis: Part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  9. Hwang, I., Kim, S., Kim, Y., Seah, C.E.: A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2009)

    Article  Google Scholar 

  10. Montgomery, D.C.: Introduction to Statistical Quality Control. Wiley, Hoboken (2007)

    MATH  Google Scholar 

  11. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

    Article  MATH  Google Scholar 

  12. Gehrmann, S., Strobelt, H., Krüger, R., Pfister, H., Rush, A.M.: Visual interaction with deep learning models through collaborative semantic inference. IEEE Trans. Vis. Comput. Graph. 26(1), 884–894 (2019)

    Google Scholar 

  13. O’Shea, T.J., Roy, T., Erpek, T.: Spectral detection and localization of radio events with learned convolutional neural features. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 331–335 (2017)

    Google Scholar 

  14. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626. IEEE (2017)

    Google Scholar 

  15. Kim, J., Kim, J.-M.: Bearing fault diagnosis using grad-CAM and acoustic emission signals. Appl. Sci. 10(6), 2050 (2020)

    Article  Google Scholar 

  16. Lowry, C.A., Montgomery, D.C.: A review of multivariate control charts. IIE Trans. 27(6), 800–810 (1995)

    Article  Google Scholar 

  17. Hotelling, H.: Multivariate Quality Control. Techniques of Statistical Analysis. McGraw-Hill, New York (1947)

    Google Scholar 

  18. Seborg, D.E., Mellichamp, D.A., Edgar, T.F., Doyle III, F.J.: Process Dynamics and Control. Wiley, Hoboken (2010)

    Google Scholar 

  19. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  20. Mastrangelo, C.M., Runger, G.C., Montgomery, D.C.: Statistical process monitoring with principal components. Qual. Reliab. Eng. Int. 12(3), 203–210 (1996)

    Article  Google Scholar 

  21. Box, G.E.P., et al.: Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification. Ann. Math. Stat. 25(2), 290–302 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Sprang, E.N.M., Ramaker, H.-J., Westerhuis, J.A., Gurden, S.P., Smilde, A.K.: Critical evaluation of approaches for on-line batch process monitoring. Chem. Eng. Sci. 57(18), 3979–3991 (2002)

    Article  Google Scholar 

  23. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  24. Lee, J.-M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.-B.: Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59(1), 223–234 (2004)

    Article  Google Scholar 

  25. Ge, Z., Yang, C., Song, Z.: Improved kernel PCA-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 64(9), 2245–2255 (2009)

    Article  Google Scholar 

  26. Mansouri, M., Nounou, M., Nounou, H., Karim, N.: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes. J. Loss Prev. Process Ind. 40, 334–347 (2016)

    Article  Google Scholar 

  27. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  Google Scholar 

  28. Fawaz, H.I., et al.: InceptionTime: Finding AlexNet for Time Series Classification. arXiv preprint arXiv:1909.04939 (2019)

  29. Abou-Nasr, M., Feldkamp, L.: Ford classification challenge (2007). Zip Archive http://www.timeseriesclassification.com/description.php

  30. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Smart Factory Technological R&D Program S2727115 funded by Ministry of SMEs and Startups (MSS, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongpil Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, C., Moon, J., Jeong, J. (2020). Explainable Process Monitoring Based on Class Activation Map: Garbage In, Garbage Out. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66770-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66769-6

  • Online ISBN: 978-3-030-66770-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics