Abstract
Automated machine learning (AutoML) deals with the automatic composition and configuration of machine learning pipelines, including the selection and parametrization of preprocessors and learning algorithms. While recent work in this area has shown impressive results, existing approaches are essentially limited to standard problem classes such as classification and regression. In parallel, research in the field of predictive maintenance, particularly remaining useful lifetime (RUL) estimation, has received increasing attention, due to its practical relevance and potential to reduce unplanned downtime in industrial plants. However, applying existing AutoML methods to RUL estimation is non-trivial, as in this domain, one has to deal with varying-length multivariate time series data. Furthermore, the data often directly originates from real-world scenarios or simulations, and hence requires extensive preprocessing. In this work, we present ML-Plan-RUL, an adaptation of the AutoML tool ML-Plan to the problem of RUL estimation. To the best of our knowledge, it is the first tool specifically tailored towards automated RUL estimation, combining feature engineering, algorithm selection, and hyperparameter optimization into an end-to-end approach. First promising experimental results demonstrate the efficacy of ML-Plan-RUL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, B., Wu, H., Mo, W., Chattopadhyay, I., Lipson, H.: Autostacker: a compositional evolutionary learning system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, 15–19 July 2018, pp. 402–409 (2018)
Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh - a python package). Neurocomputing 307, 72–77 (2018)
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 55:1–55:21 (2019)
Erickson, N., et al.: AutoGluon-tabular: robust and accurate AutoML for structured data. CoRR abs/2003.06505 (2020)
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2962–2970 (2015)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Amsterdam (2004)
Gijsbers, P., Vanschoren, J.: GAMA: genetic automated machine learning assistant. J. Open Source Softw. 4(33), 1132 (2019)
Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., Shroff, G.M.: Predicting remaining useful life using time series embeddings based on recurrent neural networks. CoRR abs/1709.01073 (2017)
Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning - Methods, Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-05318-5
Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: towards automating data science endeavors. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, 19–21 October 2015, pp. 1–10 (2015)
Kaul, A., Maheshwary, S., Pudi, V.: AutoLearn - automated feature generation and selection. In: 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, 18–21 November 2017, pp. 217–226 (2017)
Khelif, R., Chebel-Morello, B., Malinowski, S., Laajili, E., Fnaiech, F., Zerhouni, N.: Direct remaining useful life estimation based on support vector regression. IEEE Trans. Ind. Electron. 64(3), 2276–2285 (2017)
Khurana, U., Turaga, D.S., Samulowitz, H., Parthasrathy, S.: Cognito: automated feature engineering for supervised learning. In: IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, Barcelona, Spain, 12–15 December 2016, pp. 1304–1307 (2016)
Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: automated machine learning via hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018). https://doi.org/10.1007/s10994-018-5735-z
Nectoux, P., et al.: Pronostia: an experimental platform for bearings accelerated degradation tests (2012)
Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Automated Machine Learning - Methods, Systems, Challenges, pp. 151–160 (2019)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. CoRR abs/1912.07383 (2019)
de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 308–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_25
Saxena, A., Goebelt, K.: Phm08 challenge data set. vol. NASA Ames Prognostics Data Repository. NASA Ames Research Center, Moffett Field, CA (2008). http://ti.arc.nasa.gov/project/prognostic-data-repository. Accessed 20 May 2020
Saxena, A., Goebelt, K.: Turbofan engine degradation simulation data set. vol. NASA Ames Prognostics Data Repository. NASA Ames Research Center, Moffett Field, CA (2008). http://ti.arc.nasa.gov/project/prognostic-data-repository. Accessed 20 May 2020
Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: International Conference on Prognostics and Health Management, pp. 1–9. IEEE (2008)
Susto, G.A., Schirru, A., Pampuri, S., McLoone, S.F., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3) (2015)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-Weka: combined selection and hyperparameter optimization of classification algorithms. In: The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 847–855 (2013)
Wever, M., Mohr, F., Hüllermeier, E.: Automated multi-label classification based on ML-Plan. CoRR abs/1811.04060 (2018)
Wever, M.D., Mohr, F., Hüllermeier, E.: ML-Plan for unlimited-length machine learning pipelines. In: ICML 2018 AutoML Workshop (2018)
Wever, M.D., Mohr, F., Tornede, A., Hüllermeier, E.: Automating multi-label classification extending ML-Plan. In: ICML 2019 AutoML Workshop (2019)
Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)
Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: OBOE: collaborative filtering for AutoML model selection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 1173–1183 (2019)
Acknowledgements
This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472), the German Federal Ministry of Economic Affairs and Energy (FLEMING project no. 03E16012F), and the German Federal Ministry of Education and Research (ITS.ML project no. 01IS18041D). The authors gratefully acknowledge support of this project through computing time provided by the Paderborn Center for Parallel Computing (PC\(^2\)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tornede, T., Tornede, A., Wever, M., Mohr, F., Hüllermeier, E. (2020). AutoML for Predictive Maintenance: One Tool to RUL Them All. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-66770-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66769-6
Online ISBN: 978-3-030-66770-2
eBook Packages: Computer ScienceComputer Science (R0)