Skip to main content

Kinoform Generated Combined with the Error Diffusion Method and the Dynamic Random Phase

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2020)

Abstract

A computer generated kinoform combined with error diffusion and the dynamic random phase is presented. In order to compensate the error generated in the reconstructed image from the phase only hologram, the Floyd-Steinberg error diffusion technique is employed. The error can be diffused to the neighboring pixels in this method. And sequential kinoforms are generated by adding dynamic phase factor into the object domain to reduce the speckle noise. The results show that the kinoform can be achieved correctly and the representation quality of the reconstructed image can be improved compared with that obtained from the original kinoform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, J., Sang, X., Yu, X., et al.: Demonstration of a large viewing angle and high-resolution floating three-dimensional display based on the multichannel and multivariable correction algorithm. Opt. Eng. 59(10), 1–5 (2020)

    Article  Google Scholar 

  2. Lv, G.J., Zhao, B.C., Wu, F., et al. Three-dimensional display with optimized view distribution. Opt. Eng. 58(2), 023108.1–023108.4 (2019)

    Google Scholar 

  3. Okaichi, N., Miura, M., Sasaki, H., et al.: Continuous combination of viewing zones in integral three-dimensional display using multiple projectors. Opt. Eng. 57(6), 061611.1–061611.9 (2018)

    Google Scholar 

  4. Häussler, R., Leister, N., Stolle, H.: Large holographic 3D display for real-time computer-generated holography. Spie Digital Optical Technologies (2017)

    Google Scholar 

  5. Su, Y., Cai, Z., Shi, L., et al.: A multi-plane optical see-through holographic three-dimensional display for augmented reality applications. Optik Int. J. Light Electron Opt. 157, 190–196 (2018)

    Article  Google Scholar 

  6. Pi, D., Liu, J., Han, Y., et al.: Simple and effective calculation method for computer-generated hologram based on non-uniform sampling using look-up-table. Opt. Expr. 27(26), 37337 (2019)

    Google Scholar 

  7. Wen, C.: Computer-generated hologram marked by correlated photon imaging. Appl. Opt. 57(5), 1196 (2018)

    Google Scholar 

  8. Anton, G., Svyatoslav, D.: Cylindrical computer-generated hologram for displaying 3D images. Opt. Expr. 26(17), 22160 (2018)

    Google Scholar 

  9. Zhao, Y., Shi, C.X., Kwon, K.C., et al.: Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding. Opt. Commun. 411, 166–169 (2018)

    Article  Google Scholar 

  10. Stein, A.D., et al.: Computer-generated holograms: a simplified ray-tracing approach. Comput. Phys 6, 389 (1992)

    Article  Google Scholar 

  11. Liu, Y.Z., Dong, J.W., Pu, Y.Y., et al.: High-speed full analytical holographic computations for true-life scenes. Opt. Expr. 18(4), 3345–3351 (2010)

    Article  Google Scholar 

  12. Cao, X., Guan, M., Xia, L., et al.: High efficient generation of holographic stereograms based on wavefront recording plane. Chin. Opt. Lett. 15(12), 120901 (2017)

    Google Scholar 

  13. Cao, Xuemei., Sang, Xinzhu., et al.: Straightforward computer-generated fresnel hologram from multiple angular orthogonal projection images. Opt. Commun. 324, 47–52 (2014)

    Article  Google Scholar 

  14. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik (Stuttg.) 35, 237–246 (1972)

    Google Scholar 

  15. Tsang, P.W., Poon, T.-C.: Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion. Opt. Express 21(20), 23680–23686 (2013)

    Article  Google Scholar 

  16. Yeom, J., Hong, J., Jung, J. -H., Hong, K., Park, J.-H., Lee, B.: Phase-only hologram generation based on integral imaging and its enhancement in depth resolution. Chin. Opt. Lett. 9(12), 12009-1–12009-4 (2011)

    Google Scholar 

  17. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial Grey scale. Proc Soc. Info. Disp. 17, 75–77 (1976)

    Google Scholar 

  18. Zheng, H., Yu, Y., Wang, T., et al.: Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method. Opt. Lasers Eng. 50(4), 568–573 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Scientific and Technological Projects of Shenzhen (No. JCYJ20190808093001772), Guangdong Province higher vocational colleges & schools Pearl River scholar funded scheme (2016), Project of Shenzhen Science and Technology Innovation Committee (JCYJ20170817114522834), Research platform and project of Department of Education of Guangdong Province (2019GGCZX009), Engineering Applications of Artificial Intelligence Technology Laboratory (No. PT201701), Provincial Natural Science Foundation of Guangdong (No. 2017A030313337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, X., Guan, M., Xia, L., Fan, J., Wang, J. (2021). Kinoform Generated Combined with the Error Diffusion Method and the Dynamic Random Phase. In: Guan, M., Na, Z. (eds) Machine Learning and Intelligent Communications. MLICOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-66785-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66785-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66784-9

  • Online ISBN: 978-3-030-66785-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics